Sy mbolab

Symbolab Algebra Cheat Sheet

Number Rules

- $a \cdot 0=0$
- $1 \cdot a=a$

Expand Rules

- $-(a \pm b)=-a \mp b$
- $a \cdot(b+c) \cdot(d+e)=a b d+a b e+a c d+a c e$
- $-(-a)=a$
- $a \cdot(b+c)=a b+a c$
- $(a+b) \cdot(c+d)=a c+a d+b c+b d$

Fraction Rules

- $\frac{0}{a}=0, \quad a \neq 0$
- $\frac{a}{1}=a$
- $\frac{a}{a}=1$
- $\left(\frac{a}{b}\right)^{-c}=\left(\left(\frac{a}{b}\right)^{-1}\right)^{c}=\left(\frac{b}{a}\right)^{c}$
- $\left(\frac{a}{b}\right)^{-1}=\frac{1}{\left(\frac{a}{b}\right)}=\frac{b}{a}$
- $a^{-b}=\frac{1}{a^{b}}$
- $a^{-1}=\frac{1}{a}$
- $\frac{-a}{b}=-\frac{a}{b}$
- $\frac{-a}{-b}=\frac{a}{b}$
- $\frac{a}{\left(\frac{b}{c}\right)}=\frac{a \cdot c}{b}$
- $\frac{a}{-b}=-\frac{a}{b}$
- $\frac{\left(\frac{b}{c}\right)}{a}=\frac{b}{c \cdot a}$
- $\frac{1}{\left(\frac{b}{c}\right)}=\frac{c}{b}$

Absolute Rules

- $|-a|=a, \quad 0 \leq a$
- $|-a|=|a|$
- $|a|=a, \quad 0 \leq a$
- $|a \cdot x|=a \cdot|x|, 0 \leq a$

Exponent Rules

- $1^{a}=1$
- $a^{0}=1, \quad a \neq 0$
- $(a b)^{n}=a^{n} b^{n}$
- $\frac{a^{m}}{a^{n}}=\frac{1}{a^{n-m}}, \quad m<n$
- $\left(a^{b}\right)^{c}=a^{b \cdot c}$
- $\left(\frac{a}{b}\right)^{c}=\frac{a^{c}}{b^{c}}$
- $a^{c} \cdot b^{c}=(a \cdot b)^{c}$
- $\sqrt[n]{a \cdot b}=\sqrt[n]{a} \cdot \sqrt[n]{b}$
- $a^{1}=a$
- $0^{a}=0, \quad a \neq 0$
- $\frac{a^{m}}{a^{n}}=a^{m-n}, n<m$
- $a^{b+c}=a^{b} \cdot a^{c}$
- $a^{b \cdot c}=\left(a^{b}\right)^{c}$
- $a^{\frac{m}{n}}=(\sqrt[n]{a})^{m}$

Sy mbolab

Factor Rules

- $x^{2}-y^{2}=(x-y) \cdot(x+y)$
- $x^{3}+y^{3}=(x+y) \cdot\left(x^{2}-x y+y^{2}\right)$
- $x^{n}-y^{n}=(x-y) \cdot\left(x^{n-1}+x^{n-2} y+\cdots+x y^{n-2}+y^{n-1}\right)$
- $x^{n}+y^{n}=(x+y) \cdot\left(x^{n-1}-x^{n-2} y+\cdots-x y^{n-2}+y^{n-1}\right), \quad n$ is odd
- $a \cdot x^{2 \cdot n}-b=\left(\sqrt{a} \cdot x^{n}+\sqrt{b}\right)\left(\sqrt{a} \cdot x^{n}-\sqrt{b}\right)$
- $a \cdot x^{4}-b=\left(\sqrt{a} \cdot x^{2}+\sqrt{b}\right)\left(\sqrt{a} \cdot x^{2}-\sqrt{b}\right)$
- $a \cdot x^{2 \cdot n}-b \cdot y^{2 \cdot m}=\left(\sqrt{a} \cdot x^{n}+\sqrt{b} \cdot y^{m}\right)\left(\sqrt{a} \cdot x^{n}-\sqrt{b} \cdot y^{m}\right)$
- $a \cdot x^{4}-b \cdot y^{4}=\left(\sqrt{a} \cdot x^{2}+\sqrt{b} \cdot y^{2}\right)\left(\sqrt{a} \cdot x^{2}-\sqrt{b} \cdot y^{2}\right)$

Factorial Rules

- $0!=1$
- $n!=1 \cdot 2 \cdots(n-1) \cdot n$
- $\frac{n!}{(n+m)!}=\frac{1}{(n+1) \cdot(n+2) \cdots(n+m)}$
- $\frac{n!}{(n-m)!}=n \cdot(n-1) \cdots(n-m+1), m<n$

Log Rules

- $\log (0)=$ Undefined
- $\log _{a}(a)=1$
- $\log (1)=0$
- $\log _{a^{b}}(x)=\frac{1}{b} \cdot \log _{a}(x)$
- $\log _{a}\left(x^{b}\right)=b \cdot \log _{a}(x)$
- $\log _{\frac{1}{a}}(x)=-\log _{a}(x)$
- $\log _{a}\left(\frac{1}{x}\right)=-\log _{a}(x)$
- $\log _{x}\left(\left(\frac{1}{x}\right)^{n}\right)=-n$
- $\log _{x^{n}}(x)=\frac{1}{n}$
- $\log _{x}\left(x^{n}\right)=n$
- $a^{\log _{a}(b)}=b$
- $\log _{a}(b)=\frac{\ln (b)}{\ln (a)}$

Undefined

- $0^{0}=$ Undefined
- $\log _{a}(b)=$ Undefined, $a \leq 0$
- $\log _{1}(a)=$ Undefined
- $\frac{x}{0}=$ Undefined
- $\log _{a}(b)=$ Undefined, $b \leq 0$

Complex Number Rules

- $i^{2}=-1$
- $\sqrt{-1}=i$
- $\sqrt{-a}=\sqrt{-1} \cdot \sqrt{a}$

