With simple interest, we were assuming that we pocketed the interest when we received it. In a standard bank account, any interest we earn is automatically added to our balance, and we earn interest on that interest in future years. This reinvestment of interest is called compounding.
Suppose that we deposit $1000 in a bank account offering 3% interest, compounded monthly. How will our money grow?
The 3% interest is an annual percentage rate (APR) – the total interest to be paid during the year. Since interest is being paid monthly, each month, we will earn \frac{3%}{12}= 0.25% per month.
In the first month,
P0 = $1000
r = 0.0025 (0.25%)
I = $1000 (0.0025) = $2.50
A = $1000 + $2.50 = $1002.50
In the first month, we will earn $2.50 in interest, raising our account balance to $1002.50.
In the second month,
P0 = $1002.50
I = $1002.50 (0.0025) = $2.51 (rounded)
A = $1002.50 + $2.51 = $1005.01
Notice that in the second month we earned more interest than we did in the first month. This is because we earned interest not only on the original $1000 we deposited, but we also earned interest on the $2.50 of interest we earned the first month. This is the key advantage that compounding of interest gives us.
Calculating out a few more months:
Evaluating exponents on the calculator
When we need to calculate something like 53 it is easy enough to just multiply 5⋅5⋅5=125. But when we need to calculate something like 1.005240 , it would be very tedious to calculate this by multiplying 1.005 by itself 240 times! So to make things easier, we can harness the power of our scientific calculators.
Most scientific calculators have a button for exponents. It is typically either labeled like:
^ , yx , or xy .
To evaluate 1.005240 we'd type 1.005 ^ 240, or 1.005 yx 240. Try it out - you should get something around 3.3102044758.
Rounding
It is important to be very careful about rounding when calculating things with exponents. In general, you want to keep as many decimals during calculations as you can. Be sure to keep at least 3 significant digits (numbers after any leading zeros). Rounding 0.00012345 to 0.000123 will usually give you a “close enough” answer, but keeping more digits is always better.
Using your calculator
In many cases, you can avoid rounding completely by how you enter things in your calculator. For example, in the example above, we needed to calculate
P30=1000(1+120.05)12×30
We can quickly calculate 12×30 = 360, giving
P30=1000(1+120.05)360.
Now we can use the calculator.
Type this |
Calculator shows |
0.05 ÷ 12 = . |
0.00416666666667 |
+ 1 = . |
1.00416666666667 |
yx 360 = . |
4.46774431400613 |
× 1000 = . |
4467.74431400613 |
Using your calculator continued
The previous steps were assuming you have a “one operation at a time” calculator; a more advanced calculator will often allow you to type in the entire expression to be evaluated. If you have a calculator like this, you will probably just need to enter:
1000 × ( 1 + 0.05 ÷ 12 ) y
x 360 = .