We've updated our
Privacy Policy effective December 15. Please read our updated Privacy Policy and tap

Учебные пособия > College Algebra CoRequisite Course

Introduction to Partial Fractions: an Application of Systems

Learning Outcomes

By the end of this section, you will be able to:
  • Decompose   [latex]\frac{{P( x )}}{{ Q( x )}}[/latex] ,  where  Q( x )  has only nonrepeated linear factors.
  • Decompose  [latex]\frac{{P( x )}}{{ Q( x )}}[/latex] ,  where  Q( x )  has repeated linear factors.
  • Decompose  [latex]\frac{{P( x )}}{{ Q( x )}}[/latex] ,  where  Q( x )  has a nonrepeated irreducible quadratic factor.
  • Decompose  [latex]\frac{{P( x )}}{{ Q( x )}}[/latex] ,  where  Q( x )  has a repeated irreducible quadratic factor.
Earlier in this chapter, we studied systems of two equations in two variables, systems of three equations in three variables, and nonlinear systems. Here we introduce another way that systems of equations can be utilized—the decomposition of rational expressions. Fractions can be complicated; adding a variable in the denominator makes them even more so. The methods studied in this section will help simplify the concept of a rational expression.

Licenses & Attributions

CC licensed content, Original

CC licensed content, Shared previously

  • College Algebra. Provided by: OpenStax Authored by: Abramson, Jay et al.. License: CC BY: Attribution. License terms: Download for free at http://cnx.org/contents/[email protected].

CC licensed content, Specific attribution