Scientific Notation
Learning Outcomes
- Convert standard notation to scientific notation.
- Convert from scientific to standard notation.
- Apply scientific notation in an application.
Recall at the beginning of the section that we found the number 1.3×1013 when describing bits of information in digital images. Other extreme numbers include the width of a human hair, which is about 0.00005 m, and the radius of an electron, which is about 0.00000000000047 m. How can we effectively work read, compare, and calculate with numbers such as these?
A shorthand method of writing very small and very large numbers is called scientific notation, in which we express numbers in terms of exponents of 10. To write a number in scientific notation, move the decimal point to the right of the first digit in the number. Write the digits as a decimal number between 1 and 10. Count the number of places n that you moved the decimal point. Multiply the decimal number by 10 raised to a power of n. If you moved the decimal left as in a very large number, n is positive. If you moved the decimal right as in a small large number, n is negative.
For example, consider the number 2,780,418. Move the decimal left until it is to the right of the first nonzero digit, which is 2.
We obtain 2.780418 by moving the decimal point 6 places to the left. Therefore, the exponent of 10 is 6, and it is positive because we moved the decimal point to the left. This is what we should expect for a large number.
2.780418×106
Working with small numbers is similar. Take, for example, the radius of an electron, 0.00000000000047 m. Perform the same series of steps as above, except move the decimal point to the right.
Be careful not to include the leading 0 in your count. We move the decimal point 13 places to the right, so the exponent of 10 is 13. The exponent is negative because we moved the decimal point to the right. This is what we should expect for a small number.
4.7×10−13
A General Note: Scientific Notation
A number is written in
scientific notation if it is written in the form
a×10n, where
1≤∣a∣<10 and
n is an integer.
Example: Converting Standard Notation to Scientific Notation
Write each number in scientific notation.
- Distance to Andromeda Galaxy from Earth: 24,000,000,000,000,000,000,000 m
- Diameter of Andromeda Galaxy: 1,300,000,000,000,000,000,000 m
- Number of stars in Andromeda Galaxy: 1,000,000,000,000
- Diameter of electron: 0.00000000000094 m
- Probability of being struck by lightning in any single year: 0.00000143
Answer:
1.
\begin{align}&\underset{\leftarrow 22\text{ places}}{{24,000,000,000,000,000,000,000\text{ m}}} \\ &2.4\times {10}^{22}\text{ m} \\ \text{ } \end{align}
2.
\begin{align}&\underset{\leftarrow 21\text{ places}}{{1,300,000,000,000,000,000,000\text{ m}}} \\ &1.3\times {10}^{21}\text{ m} \\ &\text{ } \end{align}
3.
\begin{align}&\underset{\leftarrow 12\text{ places}}{{1,000,000,000,000}} \\ &1\times {10}^{12} \\ \text{ }\end{align}
4.
\begin{align}&\underset{\rightarrow 6\text{ places}}{{0.00000000000094\text{ m}}} \\ &9.4\times {10}^{-13}\text{ m} \\ \text{ }\end{align}
5.
\begin{align}\underset{\to 6\text{ places}}{{0.00000143}} \\ 1.43\times {10}^{-6} \\ \text{ }\end{align}
Analysis of the Solution
Observe that, if the given number is greater than 1, as in examples a–c, the exponent of 10 is positive; and if the number is less than 1, as in examples d–e, the exponent is negative.
Try It
Write each number in scientific notation.
- U.S. national debt per taxpayer (April 2014): $152,000
- World population (April 2014): 7,158,000,000
- World gross national income (April 2014): $85,500,000,000,000
- Time for light to travel 1 m: 0.00000000334 s
- Probability of winning lottery (match 6 of 49 possible numbers): 0.0000000715
Answer:
- $1.52\times {10}^{5}
- 7.158×109
- $8.55\times {10}^{13}
- 3.34×10−9
- 7.15×10−8
Converting from Scientific to Standard Notation
To convert a number in scientific notation to standard notation, simply reverse the process. Move the decimal n places to the right if n is positive or n places to the left if n is negative and add zeros as needed. Remember, if n is positive, the value of the number is greater than 1, and if n is negative, the value of the number is less than one.
Example: Converting Scientific Notation to Standard Notation
Convert each number in scientific notation to standard notation.
- 3.547×1014
- −2×106
- 7.91×10−7
- −8.05×10−12
Answer:
1.
3.547×1014→14 places3.54700000000000354,700,000,000,000
2.
−2×106→6 places−2.000000−2,000,000
3.
7.91×10−7→7 places0000007.910.000000791
4.
−8.05×10−12→12 places−000000000008.05−0.00000000000805
Try It
Convert each number in scientific notation to standard notation.
- 7.03×105
- −8.16×1011
- −3.9×10−13
- 8×10−6
Answer:
- 703,000
- −816,000,000,000
- −0.00000000000039
- 0.000008
Using Scientific Notation in Applications
Scientific notation, used with the rules of exponents, makes calculating with large or small numbers much easier than doing so using standard notation. For example, suppose we are asked to calculate the number of atoms in 1 L of water. Each water molecule contains 3 atoms (2 hydrogen and 1 oxygen). The average drop of water contains around 1.32×1021 molecules of water and 1 L of water holds about 1.22×104 average drops. Therefore, there are approximately 3⋅(1.32×1021)⋅(1.22×104)≈4.83×1025 atoms in 1 L of water. We simply multiply the decimal terms and add the exponents. Imagine having to perform the calculation without using scientific notation!
What properties of numbers enable operations on scientific notation?
In the example above,
3⋅(1.32×1021)⋅(1.22×104)≈4.83×1025. How are we are able to simply multiply the decimal terms and add the exponents? What properties of numbers enable this? Recall that multiplication is both commutative and associative. That means, as long as multiplication is the only operation being performed, we can move the factors around to suit our needs. Lastly, the product rule for exponents,
am⋅an=am+n, allows us to add the exponents on the base of
10.
(3)⋅(1.32×1021)⋅(1.22×104)=(3⋅1.32⋅1.22)×(104⋅1025)≈4.83×1025.
When performing calculations with scientific notation, be sure to write the answer in proper scientific notation. For example, consider the product (7×104)⋅(5×106)=35×1010. The answer is not in proper scientific notation because 35 is greater than 10. Consider 35 as 3.5×10. That adds a ten to the exponent of the answer.
(35)×1010=(3.5×10)×1010=3.5×(10×1010)=3.5×1011
Example: Using Scientific Notation
Perform the operations and write the answer in scientific notation.
- (8.14×10−7)(6.5×1010)
- (4×105)÷(−1.52×109)
- (2.7×105)(6.04×1013)
- (1.2×108)÷(9.6×105)
- (3.33×104)(−1.05×107)(5.62×105)
Answer:
1.
(8.14×10−7)(6.5×1010) =(8.14×6.5)(10−7×1010)=(52.91)(103)=5.291×104Commutative and associative properties of multiplicationProduct rule of exponentsScientific notation
2.
(4×105)÷(−1.52×109) =(−1.524)(109105)=(−2.63)(10−4)=−2.63×10−4Commutative and associative properties of multiplicationQuotient rule of exponentsScientific notation
3.
(2.7×105)(6.04×1013) =(2.7×6.04)(105×1013)=(16.308)(1018)=1.6308×1019Commutative and associative properties of multiplicationProduct rule of exponentsScientific notation
4.
(1.2×108)÷(9.6×105) =(9.61.2)(105108)=(0.125)(103)=1.25×102Commutative and associative properties of multiplicationQuotient rule of exponentsScientific notation
5.
(3.33×104)(−1.05×107)(5.62×105)=[3.33×(−1.05)×5.62](104×107×105)≈(−19.65)(1016)=−1.965×1017
Watch the following video to see more examples of writing numbers in scientific notation.
https://youtu.be/fsNu3AdIgdk
Try It
Perform the operations and write the answer in scientific notation.
- (−7.5×108)(1.13×10−2)
- (1.24×1011)÷(1.55×1018)
- (3.72×109)(8×103)
- (9.933×1023)÷(−2.31×1017)
- (−6.04×109)(7.3×102)(−2.81×102)
Answer:
- −8.475×106
- 8×10−8
- 2.976×1013
- −4.3×106
- ≈1.24×1015
Example: Applying Scientific Notation to Solve Problems
In April 2014, the population of the United States was about 308,000,000 people. The national debt was about $17,547,000,000,000. Write each number in scientific notation, rounding figures to two decimal places, and find the amount of the debt per U.S. citizen. Write the answer in both scientific and standard notations.
Answer:
The population was 308,000,000=3.08×108.
The national debt was $17,547,000,000,000≈$1.75×1013.
To find the amount of debt per citizen, divide the national debt by the number of citizens.
\begin{align} \left(1.75\times {10}^{13}\right)\div \left(3.08\times {10}^{8}\right)& = \left(\frac{1.75}{3.08}\right)\cdot \left(\frac{{10}^{13}}{{10}^{8}}\right) \\ & \approx 0.57\times {10}^{5}\hfill \\ & = 5.7\times {10}^{4} \end{align}
The debt per citizen at the time was about
$5.7×104, or $57,000.
Try It
An average human body contains around 30,000,000,000,000 red blood cells. Each cell measures approximately 0.000008 m long. Write each number in scientific notation and find the total length if the cells were laid end-to-end. Write the answer in both scientific and standard notations.
Answer:
Number of cells: 3×1013; length of a cell: 8×10−6 m; total length: 2.4×108 m or 240,000,000 m.
Licenses & Attributions
CC licensed content, Original
CC licensed content, Shared previously
- College Algebra. Provided by: OpenStax Authored by: Abramson, Jay et al.. License: CC BY: Attribution. License terms: Download for free at http://cnx.org/contents/9b08c294-057f-4201-9f48-5d6ad992740d@5.2.
- Examples: Write a Number in Scientific Notation. Authored by: James Sousa (Mathispower4u.com). License: CC BY: Attribution.
- Question ID 2466. Authored by: Bryan Jones. License: CC BY: Attribution. License terms: IMathAS Community License, CC-BY + GPL.
- Question ID 2836, 2839, 2841, 2824, 2828, 2830. Authored by: Gregg Harbaugh. License: CC BY: Attribution. License terms: IMathAS Community License, CC-BY + GPL.
- Question ID 2874. Authored by: David Lippman. License: CC BY: Attribution. License terms: IMathAS Community License, CC-BY + GPL.
- Question ID 3295. Authored by: Norm Friehauf. License: CC BY: Attribution. License terms: IMathAS Community License CC-BY + GPL.
- Question ID 101856, 102452. Authored by: Roy Shahbazian. License: CC BY: Attribution. License terms: IMathAS Community License CC-BY + GPL.
CC licensed content, Specific attribution
- College Algebra. Provided by: OpenStax Authored by: OpenStax College Algebra. Located at: https://cnx.org/contents/9b08c294-057f-4201-9f48-5d6ad992740d@3.278:1/Preface. License: CC BY: Attribution.