We've updated our
Privacy Policy effective December 15. Please read our updated Privacy Policy and tap

Study Guides > Calculus Volume 1

Substitution with Indefinite Integrals

Learning Objectives

  • Use substitution to evaluate indefinite integrals.
  • Integrate functions involving exponential functions.
  • Integrate functions involving logarithmic functions.
  • Integrate functions resulting in inverse trigonometric functions.

The Fundamental Theorem of Calculus gave us a method to evaluate integrals without using Riemann sums. The drawback of this method, though, is that we must be able to find an antiderivative, and this is not always easy. In this section we examine a technique, called integration by substitution, to help us find antiderivatives. Specifically, this method helps us find antiderivatives when the integrand is the result of a chain-rule derivative.

At first, the approach to the substitution procedure may not appear very obvious. However, it is primarily a visual task—that is, the integrand shows you what to do; it is a matter of recognizing the form of the function. So, what are we supposed to see? We are looking for an integrand of the form f[g(x)]g(x)dx.f\left[g(x)\right]{g}^{\prime }(x)dx. For example, in the integral (x23)32xdx,\int {({x}^{2}-3)}^{3}2xdx, we have f(x)=x3,g(x)=x23,f(x)={x}^{3},g(x)={x}^{2}-3, and g(x)=2x.g\text{‘}(x)=2x. Then,

f[g(x)]g(x)=(x23)3(2x),f\left[g(x)\right]{g}^{\prime }(x)={({x}^{2}-3)}^{3}(2x),

and we see that our integrand is in the correct form.

The method is called substitution because we substitute part of the integrand with the variable uu and part of the integrand with du. It is also referred to as change of variables because we are changing variables to obtain an expression that is easier to work with for applying the integration rules.

Substitution with Indefinite Integrals

Let u=g(x),,u=g(x),, where g(x){g}^{\prime }(x) is continuous over an interval, let f(x)f(x) be continuous over the corresponding range of gg, and let F(x)F(x) be an antiderivative of f(x).f(x). Then,

f[g(x)]g(x)dx=f(u)du=F(u)+C=F(g(x))+C.\begin{array}{cc}\int f\left[g(x)\right]{g}^{\prime }(x)dx\hfill & =\int f(u)du\hfill \\ & =F(u)+C\hfill \\ & =F(g(x))+C.\hfill \end{array}

Proof

Let ff, gg, uu, and F be as specified in the theorem. Then

ddxF(g(x))=F(g(x))g(x)=f[g(x)]g(x).\begin{array}{cc}\frac{d}{dx}F(g(x))\hfill & ={F}^{\prime }(g(x)){g}^{\prime }(x)\hfill \\ & =f\left[g(x)\right]{g}^{\prime }(x).\hfill \end{array}

Integrating both sides with respect to xx, we see that

f[g(x)]g(x)dx=F(g(x))+C.\int f\left[g(x)\right]{g}^{\prime }(x)dx=F(g(x))+C.

If we now substitute u=g(x),u=g(x), and du=g(x)dx,du=g\text{‘}(x)dx, we get

f[g(x)]g(x)dx=f(u)du=F(u)+C=F(g(x))+C.\begin{array}{cc}\int f\left[g(x)\right]{g}^{\prime }(x)dx\hfill & =\int f(u)du\hfill \\ & =F(u)+C\hfill \\ & =F(g(x))+C.\hfill \end{array}

Returning to the problem we looked at originally, we let u=x23u={x}^{2}-3 and then du=2xdx.du=2xdx. Rewrite the integral in terms of uu:

(x23)u3(2xdx)du=u3du.{\int \underset{u}{\underbrace{({x}^{2}-3)}}}^{3}\underset{du}{\underbrace{(2xdx)}}=\int {u}^{3}du.
Using the power rule for integrals, we have
u3du=u44+C.\int {u}^{3}du=\frac{{u}^{4}}{4}+C.

Substitute the original expression for xx back into the solution:

u44+C=(x23)44+C.\frac{{u}^{4}}{4}+C=\frac{{({x}^{2}-3)}^{4}}{4}+C.

We can generalize the procedure in the following Problem-Solving Strategy.

Problem-Solving Strategy: Integration by Substitution

  1. Look carefully at the integrand and select an expression g(x)g(x) within the integrand to set equal to uu. Let’s select g(x).g(x). such that g(x){g}^{\prime }(x) is also part of the integrand.
  2. Substitute u=g(x)u=g(x) and du=g(x)dx.du={g}^{\prime }(x)dx. into the integral.
  3. We should now be able to evaluate the integral with respect to uu. If the integral can’t be evaluated we need to go back and select a different expression to use as uu.
  4. Evaluate the integral in terms of uu.
  5. Write the result in terms of xx and the expression g(x).g(x).

Evaluating an inDefinite Integral Using Substitution

Use substitution to find the antiderivative of 6x(3x2+4)4dx.\int 6x{(3{x}^{2}+4)}^{4}dx.

Answer:

The first step is to choose an expression for uu. We choose u=3x2+4.u=3{x}^{2}+4. because then du=6xdx.,du=6xdx., and we already have du in the integrand. Write the integral in terms of uu:

6x(3x2+4)4dx=u4du.\int 6x{(3{x}^{2}+4)}^{4}dx=\int {u}^{4}du.

Remember that du is the derivative of the expression chosen for uu, regardless of what is inside the integrand. Now we can evaluate the integral with respect to uu:

u4du=u55+C=(3x2+4)55+C.\begin{array}{ll}\int {u}^{4}du\hfill & =\frac{{u}^{5}}{5}+C\hfill \\ \\ \\ & =\frac{{(3{x}^{2}+4)}^{5}}{5}+C.\hfill \end{array}

Analysis

We can check our answer by taking the derivative of the result of integration. We should obtain the integrand. Picking a value for C of 1, we let y=15(3x2+4)5+1.y=\frac{1}{5}{(3{x}^{2}+4)}^{5}+1. We have

y=15(3x2+4)5+1,y=\frac{1}{5}{(3{x}^{2}+4)}^{5}+1,

so

y=(15)5(3x2+4)46x=6x(3x2+4)4.\begin{array}{}\\ \hfill {y}^{\prime }& =(\frac{1}{5})5{(3{x}^{2}+4)}^{4}6x\hfill \\ & =6x{(3{x}^{2}+4)}^{4}.\hfill \end{array}

This is exactly the expression we started with inside the integrand.

Use substitution to find the antiderivative of 3x2(x33)2dx.\int 3{x}^{2}{({x}^{3}-3)}^{2}dx.

Answer:

3x2(x33)2dx=13(x33)3+C\int 3{x}^{2}{({x}^{3}-3)}^{2}dx=\frac{1}{3}{({x}^{3}-3)}^{3}+C

Hint

Let u=x33.u={x}^{3}-3.

Sometimes we need to adjust the constants in our integral if they don’t match up exactly with the expressions we are substituting.

Using Substitution with Alteration

Use substitution to find the antiderivative of zz25dz.\int z\sqrt{{z}^{2}-5}dz.

Answer:

Rewrite the integral as z(z25)1/2dz.\int z{({z}^{2}-5)}^{1\text{/}2}dz. Let u=z25u={z}^{2}-5 and du=2zdz.du=2zdz. Now we have a problem because du=2zdzdu=2zdz and the original expression has only zdz.zdz. We have to alter our expression for du or the integral in uu will be twice as large as it should be. If we multiply both sides of the du equation by 12.\frac{1}{2}. we can solve this problem. Thus,

u=z25du=2zdz12du=12(2z)dz=zdz.\begin{array}{}\\ \hfill u& ={z}^{2}-5\hfill \\ \hfill du& =2zdz\hfill \\ \hfill \frac{1}{2}du& =\frac{1}{2}(2z)dz=zdz.\hfill \end{array}

Write the integral in terms of uu, but pull the 12\frac{1}{2} outside the integration symbol:

z(z25)1/2dz=12u1/2du.\int z{({z}^{2}-5)}^{1\text{/}2}dz=\frac{1}{2}\int {u}^{1\text{/}2}du.

Integrate the expression in uu:

12u1/2du=(12)u3/232+C=(12)(23)u3/2+C=13u3/2+C=13(z25)3/2+C.\begin{array}{}\\ \frac{1}{2}\int {u}^{1\text{/}2}du\hfill & =(\frac{1}{2})\frac{{u}^{3\text{/}2}}{\frac{3}{2}}+C\hfill \\ \\ & =(\frac{1}{2})(\frac{2}{3}){u}^{3\text{/}2}+C\hfill \\ & =\frac{1}{3}{u}^{3\text{/}2}+C\hfill \\ & =\frac{1}{3}{({z}^{2}-5)}^{3\text{/}2}+C.\hfill \end{array}   

Use substitution to find the antiderivative of x2(x3+5)9dx.\int {x}^{2}{({x}^{3}+5)}^{9}dx.

Answer:

(x3+5)1030+C\frac{{({x}^{3}+5)}^{10}}{30}+C

Hint

Multiply the du equation by 13.\frac{1}{3}. 

Using Substitution with Integrals of Trigonometric Functions

Use substitution to evaluate the integral sintcos3tdt.\int \frac{ \sin t}{{ \cos }^{3}t}dt.

Answer:

We know the derivative of cost \cos t is sint,\text{−} \sin t, so we set u=cost.u= \cos t. Then du=sintdt.du=\text{−} \sin tdt. Substituting into the integral, we have

sintcos3tdt=duu3.\int \frac{ \sin t}{{ \cos }^{3}t}dt=\text{−}\int \frac{du}{{u}^{3}}.

Evaluating the integral, we get

duu3=u3du=(12)u2+C.\begin{array}{}\\ \\ \text{−}\int \frac{du}{{u}^{3}}\hfill & =\text{−}\int {u}^{-3}du\hfill \\ & =\text{−}(-\frac{1}{2}){u}^{-2}+C.\hfill \end{array}

Putting the answer back in terms of tt, we get

sintcos3tdt=12u2+C=12cos2t+C.\begin{array}{cc}\int \frac{ \sin t}{{ \cos }^{3}t}dt\hfill & =\frac{1}{2{u}^{2}}+C\hfill \\ \\ & =\frac{1}{2{ \cos }^{2}t}+C.\hfill \end{array}

Use substitution to evaluate the integral costsin2tdt.\int \frac{ \cos t}{{ \sin }^{2}t}dt.

Answer:

1sint+C-\frac{1}{ \sin t}+C

Sometimes we need to manipulate an integral in ways that are more complicated than just multiplying or dividing by a constant. We need to eliminate all the expressions within the integrand that are in terms of the original variable. When we are done, uu should be the only variable in the integrand. In some cases, this means solving for the original variable in terms of uu. This technique should become clear in the next example.

Finding an Antiderivative Using uu-Substitution

Use substitution to find the antiderivative of xx1dx.\int \frac{x}{\sqrt{x-1}}dx.

Answer:

If we let u=x1,u=x-1, then du=dx.du=dx. But this does not account for the xx in the numerator of the integrand. We need to express xx in terms of uu. If u=x1,u=x-1, then x=u+1.x=u+1. Now we can rewrite the integral in terms of uu:

xx1dx=u+1udu=u+1udu=(u1/2+u1/2)du.\begin{array}{ll}\int \frac{x}{\sqrt{x-1}}dx\hfill & =\int \frac{u+1}{\sqrt{u}}du\hfill \\ \\ & =\int \sqrt{u}+\frac{1}{\sqrt{u}}du\hfill \\ & =\int ({u}^{1\text{/}2}+{u}^{-1\text{/}2})du.\hfill \end{array}

Then we integrate in the usual way, replace uu with the original expression, and factor and simplify the result. Thus,

(u1/2+u1/2)du=23u3/2+2u1/2+C=23(x1)3/2+2(x1)1/2+C=(x1)1/2[23(x1)+2]+C=(x1)1/2(23x23+63)=(x1)1/2(23x+43)=23(x1)1/2(x+2)+C.\begin{array}{cc}\int ({u}^{1\text{/}2}+{u}^{-1\text{/}2})du\hfill & =\frac{2}{3}{u}^{3\text{/}2}+2{u}^{1\text{/}2}+C\hfill \\ \\ & =\frac{2}{3}{(x-1)}^{3\text{/}2}+2{(x-1)}^{1\text{/}2}+C\hfill \\ & ={(x-1)}^{1\text{/}2}\left[\frac{2}{3}(x-1)+2\right]+C\hfill \\ & ={(x-1)}^{1\text{/}2}(\frac{2}{3}x-\frac{2}{3}+\frac{6}{3})\hfill \\ & ={(x-1)}^{1\text{/}2}(\frac{2}{3}x+\frac{4}{3})\hfill \\ & =\frac{2}{3}{(x-1)}^{1\text{/}2}(x+2)+C.\hfill \end{array}

Use substitution to evaluate the indefinite integral cos3tsintdt.\int { \cos }^{3}t \sin tdt.

Answer:

cos4t4+C-\frac{{ \cos }^{4}t}{4}+C

Integrals of Exponential Functions

The exponential function is perhaps the most efficient function in terms of the operations of calculus. The exponential function, y=ex,y={e}^{x}, is its own derivative and its own integral.

Rule: Integrals of Exponential Functions

Exponential functions can be integrated using the following formulas.

exdx=ex+Caxdx=axlna+C\begin{array}{ccc}\int {e}^{x}dx\hfill & =\hfill & {e}^{x}+C\hfill \\ \int {a}^{x}dx\hfill & =\hfill & \frac{{a}^{x}}{\text{ln}a}+C\hfill \end{array}

Finding an Antiderivative of an Exponential Function

Find the antiderivative of the exponential function eexx.

Answer:

Use substitution, setting u=x,u=\text{−}x, and then du=1dx.du=-1dx. Multiply the du equation by −1, so you now have du=dx.\text{−}du=dx. Then,

exdx=eudu=eu+C=ex+C.\begin{array}{cc}\int {e}^{\text{−}x}dx\hfill & =\text{−}\int {e}^{u}du\hfill \\ \\ & =\text{−}{e}^{u}+C\hfill \\ & =\text{−}{e}^{\text{−}x}+C.\hfill \end{array}

Find the antiderivative of the function using substitution: x2e2x3.{x}^{2}{e}^{-2{x}^{3}}.

Answer:

x2e2x3dx=16e2x3+C\int {x}^{2}{e}^{-2{x}^{3}}dx=-\frac{1}{6}{e}^{-2{x}^{3}}+C

Hint

Let uu equal the exponent on ee.

A common mistake when dealing with exponential expressions is treating the exponent on ee the same way we treat exponents in polynomial expressions. We cannot use the power rule for the exponent on ee. This can be especially confusing when we have both exponentials and polynomials in the same expression, as in the previous checkpoint. In these cases, we should always double-check to make sure we’re using the right rules for the functions we’re integrating.

Square Root of an Exponential Function

Find the antiderivative of the exponential function ex1+ex.{e}^{x}\sqrt{1+{e}^{x}}.

Answer:

First rewrite the problem using a rational exponent:

ex1+exdx=ex(1+ex)1/2dx.\int {e}^{x}\sqrt{1+{e}^{x}}dx=\int {e}^{x}{(1+{e}^{x})}^{1\text{/}2}dx.
Using substitution, choose u=1+ex.u=1+ex.u=1+{e}^{x}.u=1+{e}^{x}. Then, du=exdx.du={e}^{x}dx. We have ((Figure))
ex(1+ex)1/2dx=u1/2du.\int {e}^{x}{(1+{e}^{x})}^{1\text{/}2}dx=\int {u}^{1\text{/}2}du.

Then

u1/2du=u3/23/2+C=23u3/2+C=23(1+ex)3/2+C.\int {u}^{1\text{/}2}du=\frac{{u}^{3\text{/}2}}{3\text{/}2}+C=\frac{2}{3}{u}^{3\text{/}2}+C=\frac{2}{3}{(1+{e}^{x})}^{3\text{/}2}+C.
A graph of the function f(x) = e^x * sqrt(1 + e^x), which is an increasing concave up curve, over [-3, 1]. It begins close to the x axis in quadrant two, crosses the y axis at (0, sqrt(2)), and continues to increase rapidly. Figure 1. The graph shows an exponential function times the square root of an exponential function.

Find the antiderivative of ex(3ex2)2.{e}^{x}{(3{e}^{x}-2)}^{2}.

ex(3ex2)2dx=19(3ex2)3\int {e}^{x}{(3{e}^{x}-2)}^{2}dx=\frac{1}{9}{(3{e}^{x}-2)}^{3}

Hint

Let u=3ex2u=3ex2.u=3{e}^{x}-2u=3{e}^{x}-2.

Using Substitution with an Exponential Function

Use substitution to evaluate the indefinite integral 3x2e2x3dx.\int 3{x}^{2}{e}^{2{x}^{3}}dx.

Answer:

Here we choose to let uu equal the expression in the exponent on ee. Let u=2x3u=2{x}^{3} and du=6x2dx..du=6{x}^{2}dx.. Again, du is off by a constant multiplier; the original function contains a factor of 3xx2, not 6xx2. Multiply both sides of the equation by 12\frac{1}{2} so that the integrand in uu equals the integrand in xx. Thus,

3x2e2x3dx=12eudu.\int 3{x}^{2}{e}^{2{x}^{3}}dx=\frac{1}{2}\int {e}^{u}du.

Integrate the expression in uu and then substitute the original expression in xx back into the uu integral:

12eudu=12eu+C=12e2x3+C.\frac{1}{2}\int {e}^{u}du=\frac{1}{2}{e}^{u}+C=\frac{1}{2}{e}^{2{x}^{3}}+C.

Evaluate the indefinite integral 2x3ex4dx.\int 2{x}^{3}{e}^{{x}^{4}}dx.

Answer:

2x3ex4dx=12ex4\int 2{x}^{3}{e}^{{x}^{4}}dx=\frac{1}{2}{e}^{{x}^{4}}

Hint

Let u=x4.u={x}^{4}.

Integrals Involving Logarithmic Functions

Integrating functions of the form f(x)=x1f(x)={x}^{-1} result in the absolute value of the natural log function, as shown in the following rule. Integral formulas for other logarithmic functions, such as f(x)=lnxf(x)=\text{ln}x and f(x)=logax,f(x)={\text{log}}_{a}x, are also included in the rule.

Rule: Integration Formulas Involving Logarithmic Functions

The following formulas can be used to evaluate integrals involving logarithmic functions.

x1dx=lnx+Clnxdx=xlnxx+C=x(lnx1)+Clogaxdx=xlna(lnx1)+C\begin{array}{ccc}\hfill \int {x}^{-1}dx& =\hfill & \text{ln}|x|+C\hfill \\ \hfill \int \text{ln}xdx& =\hfill & x\text{ln}x-x+C=x(\text{ln}x-1)+C\hfill \\ \hfill \int {\text{log}}_{a}xdx& =\hfill & \frac{x}{\text{ln}a}(\text{ln}x-1)+C\hfill \end{array}

Finding an Antiderivative Involving lnx\text{ln}x

Find the antiderivative of the function 3x10.\frac{3}{x-10}.

Answer:

First factor the 3 outside the integral symbol. Then use the uu−1 rule. Thus,

3x10dx=31x10dx=3duu=3lnu+C=3lnx10+C,x10.\begin{array}{ll}\int \frac{3}{x-10}dx\hfill & =3\int \frac{1}{x-10}dx\hfill \\ \\ \\ & =3\int \frac{du}{u}\hfill \\ & =3\text{ln}|u|+C\hfill \\ & =3\text{ln}|x-10|+C,x\ne 10.\hfill \end{array}

See (Figure).

A graph of the function f(x) = 3 / (x – 10). There is an asymptote at x=10. The first segment is a decreasing concave down curve that approaches 0 as x goes to negative infinity and approaches negative infinity as x goes to 10. The second segment is a decreasing concave up curve that approaches infinity as x goes to 10 and approaches 0 as x approaches infinity. Figure 3. The domain of this function is x10.x\ne 10.

Find the antiderivative of 1x+2.\frac{1}{x+2}.

Answer:

lnx+2+C\text{ln}|x+2|+C

Hint

Follow the pattern from (Figure) to solve the problem.

Finding an Antiderivative of a Rational Function

Find the antiderivative of 2x3+3xx4+3x2.\frac{2{x}^{3}+3x}{{x}^{4}+3{x}^{2}}.

This can be rewritten as (2x3+3x)(x4+3x2)1dx.\int (2{x}^{3}+3x){({x}^{4}+3{x}^{2})}^{-1}dx. Use substitution. Let u=x4+3x2,u={x}^{4}+3{x}^{2}, then du=4x3+6x.du=4{x}^{3}+6x. Alter du by factoring out the 2. Thus,
du=(4x3+6x)dx=2(2x3+3x)dx12du=(2x3+3x)dx.\begin{array}{}\\ \hfill du& =\hfill & (4{x}^{3}+6x)dx\hfill \\ & =\hfill & 2(2{x}^{3}+3x)dx\hfill \\ \hfill \frac{1}{2}du& =\hfill & (2{x}^{3}+3x)dx.\hfill \end{array}

Rewrite the integrand in uu:

(2x3+3x)(x4+3x2)1dx=12u1du.\int (2{x}^{3}+3x){({x}^{4}+3{x}^{2})}^{-1}dx=\frac{1}{2}\int {u}^{-1}du.

Then we have

12u1du=12lnu+C=12lnx4+3x2+C.\begin{array}{ll}\frac{1}{2}\int {u}^{-1}du\hfill & =\frac{1}{2}\text{ln}|u|+C\hfill \\ \\ & =\frac{1}{2}\text{ln}|{x}^{4}+3{x}^{2}|+C.\hfill \end{array}

Finding an Antiderivative of a Logarithmic Function

Find the antiderivative of the log function log2x.{\text{log}}_{2}x.

Answer:

Follow the format in the formula listed in the rule on integration formulas involving logarithmic functions. Based on this format, we have

log2xdx=xln2(lnx1)+C.\int {\text{log}}_{2}xdx=\frac{x}{\text{ln}2}(\text{ln}x-1)+C.

Find the antiderivative of log3x.{\text{log}}_{3}x.

Answer:

xln3(lnx1)+C\frac{x}{\text{ln}3}(\text{ln}x-1)+C

Hint

Follow (Figure) and refer to the rule on integration formulas involving logarithmic functions.

Next, we will focus on integrals that result in inverse trigonometric functions. We have worked with these functions before. Recall from Functions and Graphs that trigonometric functions are not one-to-one unless the domains are restricted. When working with inverses of trigonometric functions, we always need to be careful to take these restrictions into account. Also in Derivatives, we developed formulas for derivatives of inverse trigonometric functions. The formulas developed there give rise directly to integration formulas involving inverse trigonometric functions.

Integrals that Result in Inverse Sine Functions

Let us begin with the three formulas. Along with these formulas, we use substitution to evaluate the integrals. We prove the formula for the inverse sine integral.

Rule: Integration Formulas Resulting in Inverse Trigonometric Functions

The following integration formulas yield inverse trigonometric functions:

  1. dua2u2=sin1ua+C\int \frac{du}{\sqrt{{a}^{2}-{u}^{2}}}={ \sin }^{-1}\frac{u}{a}+C
  2. dua2+u2=1atan1ua+C\int \frac{du}{{a}^{2}+{u}^{2}}=\frac{1}{a}\phantom{\rule{0.05em}{0ex}}{ \tan }^{-1}\frac{u}{a}+C
  3. duuu2a2=1asec1ua+C\int \frac{du}{u\sqrt{{u}^{2}-{a}^{2}}}=\frac{1}{a}\phantom{\rule{0.05em}{0ex}}{ \sec }^{-1}\frac{u}{a}+C

Proof

Let y=sin1xa.y={ \sin }^{-1}\frac{x}{a}. Then asiny=x.a \sin y=x. Now let’s use implicit differentiation. We obtain

ddx(asiny)=ddx(x)acosydydx=1dydx=1acosy.\begin{array}{ccc}\hfill \frac{d}{dx}(a \sin y)& =\hfill & \frac{d}{dx}(x)\hfill \\ \\ \hfill a \cos y\frac{dy}{dx}& =\hfill & 1\hfill \\ \hfill \frac{dy}{dx}& =\hfill & \frac{1}{a \cos y}.\hfill \end{array}

For π2yπ2,cosy0.-\frac{\pi }{2}\le y\le \frac{\pi }{2}, \cos y\ge 0. Thus, applying the Pythagorean identity sin2y+cos2y=1,{ \sin }^{2}y+{ \cos }^{2}y=1, we have cosy=1=sin2y. \cos y=\sqrt{1={ \sin }^{2}y}. This gives

1acosy=1a1sin2y=1a2a2sin2y=1a2x2.\begin{array}{cc}\frac{1}{a \cos y}\hfill & =\frac{1}{a\sqrt{1-{ \sin }^{2}y}}\hfill \\ \\ & =\frac{1}{\sqrt{{a}^{2}-{a}^{2}{ \sin }^{2}y}}\hfill \\ & =\frac{1}{\sqrt{{a}^{2}-{x}^{2}}}.\hfill \end{array}

Then for axa,\text{−}a\le x\le a, we have

1a2u2du=sin1(ua)+C.\int \frac{1}{\sqrt{{a}^{2}-{u}^{2}}}du={ \sin }^{-1}(\frac{u}{a})+C.

Find the antiderivative of dx116x2.\int \frac{dx}{\sqrt{1-16{x}^{2}}}.

Answer: 14sin1(4x)+C\frac{1}{4}\phantom{\rule{0.05em}{0ex}}{ \sin }^{-1}(4x)+C

Hint

Substitute u=4xu=4x

Finding an Antiderivative Involving an Inverse Trigonometric Function

Evaluate the integral dx49x2.\int \frac{dx}{\sqrt{4-9{x}^{2}}}.

Answer: Substitute u=3x.u=3x. Then du=3dxdu=3dx and we have

dx49x2=13du4u2.\int \frac{dx}{\sqrt{4-9{x}^{2}}}=\frac{1}{3}\int \frac{du}{\sqrt{4-{u}^{2}}}.

Applying the formula with a=2,a=2, we obtain

dx49x2=13du4u2=13sin1(u2)+C=13sin1(3x2)+C.\begin{array}{cc}\int \frac{dx}{\sqrt{4-9{x}^{2}}}\hfill & =\frac{1}{3}\int \frac{du}{\sqrt{4-{u}^{2}}}\hfill \\ \\ & =\frac{1}{3}{ \sin }^{-1}(\frac{u}{2})+C\hfill \\ & =\frac{1}{3}{ \sin }^{-1}(\frac{3x}{2})+C.\hfill \end{array}

Find the indefinite integral using an inverse trigonometric function and substitution for dx9x2.\int \frac{dx}{\sqrt{9-{x}^{2}}}.

Answer:

sin1(x3)+C{ \sin }^{-1}(\frac{x}{3})+C

Hint

Use the formula in the rule on integration formulas resulting in inverse trigonometric functions.

Integrals Resulting in Other Inverse Trigonometric Functions

There are six inverse trigonometric functions. However, only three integration formulas are noted in the rule on integration formulas resulting in inverse trigonometric functions because the remaining three are negative versions of the ones we use. The only difference is whether the integrand is positive or negative. Rather than memorizing three more formulas, if the integrand is negative, simply factor out −1 and evaluate the integral using one of the formulas already provided. To close this section, we examine one more formula: the integral resulting in the inverse tangent function.

Finding an Antiderivative Involving the Inverse Tangent Function

Find an antiderivative of 11+4x2dx.\int \frac{1}{1+4{x}^{2}}dx.

Answer:

Comparing this problem with the formulas stated in the rule on integration formulas resulting in inverse trigonometric functions, the integrand looks similar to the formula for tan1u+C.{ \tan }^{-1}u+C. So we use substitution, letting u=2x,u=2x, then du=2dxdu=2dx and 1/2du=dx.1\text{/}2du=dx. Then, we have

1211+u2du=12tan1u+C=12tan1(2x)+C.\frac{1}{2}\int \frac{1}{1+{u}^{2}}du=\frac{1}{2}\phantom{\rule{0.05em}{0ex}}{ \tan }^{-1}u+C=\frac{1}{2}\phantom{\rule{0.05em}{0ex}}{ \tan }^{-1}(2x)+C.

Use substitution to find the antiderivative of dx25+4x2.\int \frac{dx}{25+4{x}^{2}}.

Answer:

110tan1(2x5)+C\frac{1}{10}\phantom{\rule{0.05em}{0ex}}{ \tan }^{-1}(\frac{2x}{5})+C

Hint

Use the solving strategy from (Figure) and the rule on integration formulas resulting in inverse trigonometric functions.

Applying the Integration Formulas

Find the antiderivative of 19+x2dx.\int \frac{1}{9+{x}^{2}}dx.

Apply the formula with a=3.a=3. Then,

dx9+x2=13tan1(x3)+C.\int \frac{dx}{9+{x}^{2}}=\frac{1}{3}\phantom{\rule{0.05em}{0ex}}{ \tan }^{-1}(\frac{x}{3})+C.

Find the antiderivative of dx16+x2.\int \frac{dx}{16+{x}^{2}}.

Answer:

14tan1(x4)+C\frac{1}{4}\phantom{\rule{0.05em}{0ex}}{ \tan }^{-1}(\frac{x}{4})+C

Hint

Follow the steps in (Figure).

Key Concepts

  • Substitution is a technique that simplifies the integration of functions that are the result of a chain-rule derivative. The term ‘substitution’ refers to changing variables or substituting the variable uu and du for appropriate expressions in the integrand.
  • When using substitution for a definite integral, we also have to change the limits of integration.

Key Equations

  • Substitution with Indefinite Integrals f[g(x)]g(x)dx=f(u)du=F(u)+C=F(g(x))+C\int f\left[g(x)\right]{g}^{\prime }(x)dx=\int f(u)du=F(u)+C=F(g(x))+C
  • Substitution with Definite Integrals abf(g(x))g(x)dx=g(a)g(b)f(u)du{\int }_{a}^{b}f(g(x))g\text{‘}(x)dx={\int }_{g(a)}^{g(b)}f(u)du

1. Why is uu-substitution referred to as change of variable?

2. If f=gh,f=g\circ h, when reversing the chain rule, ddx(gh)(x)=g(h(x))h(x),\frac{d}{dx}(g\circ h)(x)={g}^{\prime }(h(x)){h}^{\prime }(x), should you take u=g(x)u=g(x) or u=h(x)?u=h(x)?

Answer:

u=h(x)u=h(x)

In the following exercises, verify each identity using differentiation. Then, using the indicated uu-substitution, identify ff such that the integral takes the form f(u)du.\int f(u)du.

3. xx+1dx=215(x+1)3/2(3x2)+C;u=x+1\int x\sqrt{x+1}dx=\frac{2}{15}{(x+1)}^{3\text{/}2}(3x-2)+C;u=x+1

4. x2x1dx(x>1)=215x1(3x2+4x+8)+C;u=x1\int \frac{{x}^{2}}{\sqrt{x-1}}dx(x>1)=\frac{2}{15}\sqrt{x-1}(3{x}^{2}+4x+8)+C;u=x-1

Answer:

f(u)=(u+1)2uf(u)=\frac{{(u+1)}^{2}}{\sqrt{u}}

5. x4x2+9dx=112(4x2+9)3/2+C;u=4x2+9\int x\sqrt{4{x}^{2}+9}dx=\frac{1}{12}{(4{x}^{2}+9)}^{3\text{/}2}+C;u=4{x}^{2}+9

6. x4x2+9dx=144x2+9+C;u=4x2+9\int \frac{x}{\sqrt{4{x}^{2}+9}}dx=\frac{1}{4}\sqrt{4{x}^{2}+9}+C;u=4{x}^{2}+9

Answer:

du=8xdx;f(u)=18udu=8xdx;f(u)=\frac{1}{8\sqrt{u}}

7. x(4x2+9)2dx=18(4x2+9);u=4x2+9\int \frac{x}{{(4{x}^{2}+9)}^{2}}dx=-\frac{1}{8(4{x}^{2}+9)};u=4{x}^{2}+9

In the following exercises, find the antiderivative using the indicated substitution.

8. (x+1)4dx;u=x+1\int {(x+1)}^{4}dx;u=x+1

Answer:

15(x+1)5+C\frac{1}{5}{(x+1)}^{5}+C

9. (x1)5dx;u=x1\int {(x-1)}^{5}dx;u=x-1

10. (2x3)7dx;u=2x3\int {(2x-3)}^{-7}dx;u=2x-3

Answer:

112(32x)6+C-\frac{1}{12{(3-2x)}^{6}}+C

11. (3x2)11dx;u=3x2\int {(3x-2)}^{-11}dx;u=3x-2

12. xx2+1dx;u=x2+1\int \frac{x}{\sqrt{{x}^{2}+1}}dx;u={x}^{2}+1

Answer:

x2+1+C\sqrt{{x}^{2}+1}+C

13. x1x2dx;u=1x2\int \frac{x}{\sqrt{1-{x}^{2}}}dx;u=1-{x}^{2}

14. (x1)(x22x)3dx;u=x22x\int (x-1){({x}^{2}-2x)}^{3}dx;u={x}^{2}-2x

Answer:

18(x22x)4+C\frac{1}{8}{({x}^{2}-2x)}^{4}+C

15. (x22x)(x33x2)2dx;u=x3=3x2\int ({x}^{2}-2x){({x}^{3}-3{x}^{2})}^{2}dx;u={x}^{3}=3{x}^{2}

16. cos3θdθ;u=sinθ\int { \cos }^{3}\theta d\theta ;u= \sin \theta (Hint:cos2θ=1sin2θHint\text{:}{ \cos }^{2}\theta =1-{ \sin }^{2}\theta )

Answer:

sinθsin3θ3+C \sin \theta -\frac{{ \sin }^{3}\theta }{3}+C

17. sin3θdθ;u=cosθ\int { \sin }^{3}\theta d\theta ;u= \cos \theta (Hint:sin2θ=1cos2θ)(Hint\text{:}{ \sin }^{2}\theta =1-{ \cos }^{2}\theta)

In the following exercises, use a suitable change of variables to determine the indefinite integral.

18. x(1x)99dx\int x{(1-x)}^{99}dx

Answer:

(1x)101101(1x)100100+C\frac{{(1-x)}^{101}}{101}-\frac{{(1-x)}^{100}}{100}+C

19. t(1t2)10dt\int t{(1-{t}^{2})}^{10}dt

20. (11x7)3dx\int {(11x-7)}^{-3}dx

Answer:

122(711x2)+C-\frac{1}{22(7-11{x}^{2})}+C

21. (7x11)4dx\int {(7x-11)}^{4}dx

22. cos3θsinθdθ\int { \cos }^{3}\theta \sin \theta d\theta

Answer:

cos4θ4+C-\frac{{ \cos }^{4}\theta }{4}+C

23. sin7θcosθdθ\int { \sin }^{7}\theta \cos \theta d\theta

24. cos2(πt)sin(πt)dt\int { \cos }^{2}(\pi t) \sin (\pi t)dt

Answer:

cos3(πt)3π+C-\frac{{ \cos }^{3}(\pi t)}{3\pi }+C

25. sin2xcos3xdx\int { \sin }^{2}x{ \cos }^{3}xdx(Hint:sin2x+cos2x=1)(Hint\text{:}{ \sin }^{2}x+{ \cos }^{2}x=1)

26. tsin(t2)cos(t2)dt\int t \sin ({t}^{2}) \cos ({t}^{2})dt

Answer:

14cos2(t2)+C-\frac{1}{4}\phantom{\rule{0.05em}{0ex}}{ \cos }^{2}({t}^{2})+C

27. t2cos2(t3)sin(t3)dt\int {t}^{2}{ \cos }^{2}({t}^{3}) \sin ({t}^{3})dt

28. x2(x33)2dx\int \frac{{x}^{2}}{{({x}^{3}-3)}^{2}}dx

Answer:

13(x33)+C-\frac{1}{3({x}^{3}-3)}+C

29. x31x2dx\int \frac{{x}^{3}}{\sqrt{1-{x}^{2}}}dx

30. y5(1y3)3/2dy\int \frac{{y}^{5}}{{(1-{y}^{3})}^{3\text{/}2}}dy

Answer:

2(y32)31y3-\frac{2({y}^{3}-2)}{3\sqrt{1-{y}^{3}}}

31. cosθ(1cosθ)99sinθdθ{\int \cos \theta (1- \cos \theta )}^{99} \sin \theta d\theta

32. (1cos3θ)10cos2θsinθdθ{\int (1-{ \cos }^{3}\theta )}^{10}{ \cos }^{2}\theta \sin \theta d\theta

Answer:

133(1cos3θ)11+C\frac{1}{33}{(1-{ \cos }^{3}\theta )}^{11}+C

33. (cosθ1)(cos2θ2cosθ)3sinθdθ\int ( \cos \theta -1){({ \cos }^{2}\theta -2 \cos \theta )}^{3} \sin \theta d\theta

34. (sin2θ2sinθ)(sin3θ3sin2θ)3cosθdθ\int ({ \sin }^{2}\theta -2 \sin \theta ){({ \sin }^{3}\theta -3{ \sin }^{2}\theta )}^{3} \cos \theta d\theta

Answer:

112(sin3θ3sin2θ)4+C\frac{1}{12}{({ \sin }^{3}\theta -3{ \sin }^{2}\theta )}^{4}+C

35. e2xdx\int {e}^{2x}dx

36. e3xdx\int {e}^{-3x}dx

Answer:

13e3x+C\frac{-1}{3}{e}^{-3x}+C

37. 2xdx\int {2}^{x}dx

38. 3xdx\int {3}^{\text{−}x}dx

Answer:

3xln3+C-\frac{{3}^{\text{−}x}}{\text{ln}3}+C

39. 12xdx\int \frac{1}{2x}dx

40. 2xdx\int \frac{2}{x}dx

Answer:

ln(x2)+C\text{ln}({x}^{2})+C

41. 1x2dx\int \frac{1}{{x}^{2}}dx

42. 1xdx\int \frac{1}{\sqrt{x}}dx

Answer:

2x+C2\sqrt{x}+C

In the following exercises, find each indefinite integral by using appropriate substitutions.

43. lnxxdx\int \frac{\text{ln}x}{x}dx

44. dxx(lnx)2\int \frac{dx}{x{(\text{ln}x)}^{2}}

Answer:

1lnx+C-\frac{1}{\text{ln}x}+C

45. dxxlnx(x>1)\int \frac{dx}{x\text{ln}x}(x>1)

46. dxxlnxln(lnx)\int \frac{dx}{x\text{ln}x\text{ln}(\text{ln}x)}

Answer:

ln(ln(lnx))+C\text{ln}(\text{ln}(\text{ln}x))+C

47. tanθdθ\int \tan \theta d\theta

48. cosxxsinxxcosxdx\int \frac{ \cos x-x \sin x}{x \cos x}dx

Answer: ln(xcosx)+C\text{ln}(x \cos x)+C

49. ln(sinx)tanxdx\int \frac{\text{ln}( \sin x)}{ \tan x}dx

50. ln(cosx)tanxdx\int \text{ln}( \cos x) \tan xdx

Answer: 12(ln(cos(x)))2+C-\frac{1}{2}{(\text{ln}( \cos (x)))}^{2}+C

51. xex2dx\int x{e}^{\text{−}{x}^{2}}dx

52. x2ex3dx\int {x}^{2}{e}^{\text{−}{x}^{3}}dx

Answer:

ex33+C\frac{\text{−}{e}^{\text{−}{x}^{3}}}{3}+C

53. esinxcosxdx\int {e}^{ \sin x} \cos xdx

54. etanxsec2xdx\int {e}^{ \tan x}{ \sec }^{2}xdx

Answer:

etanx+C{e}^{ \tan x}+C

55. elnxdxx\int {e}^{\text{ln}x}\frac{dx}{x}

56. eln(1t)1tdt\int \frac{{e}^{\text{ln}(1-t)}}{1-t}dt

Answer:

t+Ct+C

In the following exercises, verify by differentiation that lnxdx=x(lnx1)+C,\int \text{ln}xdx=x(\text{ln}x-1)+C, then use appropriate changes of variables to compute the integral.
57. lnxdx\int \text{ln}xdx(Hint:lnxdx=12xln(x2)dx)(Hint\text{:}\int \text{ln}xdx=\frac{1}{2}\int x\text{ln}({x}^{2})dx)

58. x2ln2xdx\int {x}^{2}{\text{ln}}^{2}xdx

Answer:

19x3(ln(x3)1)+C\frac{1}{9}{x}^{3}(\text{ln}({x}^{3})-1)+C

59. lnxx2dx\int \frac{\text{ln}x}{{x}^{2}}dx(Hint:Setu=1x.)(Hint\text{:}\text{Set}u=\frac{1}{x}\text{.})

60. lnxxdx\int \frac{\text{ln}x}{\sqrt{x}}dx(Hint:Setu=x.)(Hint\text{:}\text{Set}u=\sqrt{x}\text{.})

Answer:

2x(lnx2)+C2\sqrt{x}(\text{ln}x-2)+C

61. Write an integral to express the area under the graph of y=1ty=\frac{1}{t} from t=1t=1 to ex and evaluate the integral.

62. Write an integral to express the area under the graph of y=ety={e}^{t} between t=0t=0 and t=lnx,t=\text{ln}x, and evaluate the integral.

Answer:

0lnxetdt=et0lnx=elnxe0=x1{\int }_{0}^{\text{ln}x}{e}^{t}dt={e}^{t}{|}_{0}^{\text{ln}x}={e}^{\text{ln}x}-{e}^{0}=x-1

In the following exercises, use appropriate substitutions to express the trigonometric integrals in terms of compositions with logarithms.

63. tan(2x)dx\int \tan (2x)dx

64. sin(3x)cos(3x)sin(3x)+cos(3x)dx\int \frac{ \sin (3x)- \cos (3x)}{ \sin (3x)+ \cos (3x)}dx

Answer:

13ln(sin(3x)+cos(3x))-\frac{1}{3}\text{ln}( \sin (3x)+ \cos (3x))

65. xsin(x2)cos(x2)dx\int \frac{x \sin ({x}^{2})}{ \cos ({x}^{2})}dx

66. xcsc(x2)dx\int x \csc ({x}^{2})dx

Answer:

12lncsc(x2)+cot(x2)+C-\frac{1}{2}\text{ln}| \csc ({x}^{2})+ \cot ({x}^{2})|+C

67. ln(cosx)tanxdx\int \text{ln}( \cos x) \tan xdx

68. ln(cscx)cotxdx\int \text{ln}( \csc x) \cot xdx

Answer:

12(ln(cscx))2+C-\frac{1}{2}{(\text{ln}( \csc x))}^{2}+C

69. exexex+exdx\int \frac{{e}^{x}-{e}^{\text{−}x}}{{e}^{x}+{e}^{\text{−}x}}dx

In the following exercises, evaluate the definite integral.

70. 121+2x+x23x+3x2+x3dx{\int }_{1}^{2}\frac{1+2x+{x}^{2}}{3x+3{x}^{2}+{x}^{3}}dx

Answer: 13ln(267)\frac{1}{3}\text{ln}(\frac{26}{7})

In the following exercises, integrate using the indicated substitution.

71. xx100dx;u=x100\int \frac{x}{x-100}dx;u=x-100

72. y1y+1dy;u=y+1\int \frac{y-1}{y+1}dy;u=y+1

Answer:

y2lny+1+Cy-2\text{ln}|y+1|+C

73. 1x23xx3dx;u=3xx3\int \frac{1-{x}^{2}}{3x-{x}^{3}}dx;u=3x-{x}^{3}

74. sinx+cosxsinxcosxdx;u=sinxcosx\int \frac{ \sin x+ \cos x}{ \sin x- \cos x}dx;u= \sin x- \cos x

Answer:

lnsinxcosx+C\text{ln}| \sin x- \cos x|+C

75. e2x1e2xdx;u=e2x\int {e}^{2x}\sqrt{1-{e}^{2x}}dx;u={e}^{2x}

76. ln(x)1(lnx)2xdx;u=lnx\int \text{ln}(x)\frac{\sqrt{1-{(\text{ln}x)}^{2}}}{x}dx;u=\text{ln}x

Answer:

13(1(lnx2))3/2+C-\frac{1}{3}{(1-(\text{ln}{x}^{2}))}^{3\text{/}2}+C

In the following exercises, find each indefinite integral, using appropriate substitutions.

77. dx9x2\int \frac{dx}{\sqrt{9-{x}^{2}}}

Answer: sin1(x3)+C{ \sin }^{-1}(\frac{x}{3})+C

78. dx116x2\int \frac{dx}{\sqrt{1-16{x}^{2}}}

79. dx9+x2\int \frac{dx}{9+{x}^{2}}

Answer:

13tan1(x3)+C\frac{1}{3}\phantom{\rule{0.05em}{0ex}}{ \tan }^{-1}(\frac{x}{3})+C

80. dx25+16x2\int \frac{dx}{25+16{x}^{2}}

81. dxxx29\int \frac{dx}{|x|\sqrt{{x}^{2}-9}}

Answer:

13sec1(x3)+C\frac{1}{3}\phantom{\rule{0.05em}{0ex}}{ \sec }^{-1}(\frac{x}{3})+C

82. dxx4x216\int \frac{dx}{|x|\sqrt{4{x}^{2}-16}}

83. Explain the relationship cos1t+C=dt1t2=sin1t+C.\text{−}{ \cos }^{-1}t+C=\int \frac{dt}{\sqrt{1-{t}^{2}}}={ \sin }^{-1}t+C. Is it true, in general, that cos1t=sin1t?{ \cos }^{-1}t=\text{−}{ \sin }^{-1}t?

Answer:

cos(π2θ)=sinθ. \cos (\frac{\pi }{2}-\theta )= \sin \theta . So, sin1t=π2cos1t.{ \sin }^{-1}t=\frac{\pi }{2}-{ \cos }^{-1}t. They differ by a constant.

84. Explain the relationship sec1t+C=dttt21=csc1t+C.{ \sec }^{-1}t+C=\int \frac{dt}{|t|\sqrt{{t}^{2}-1}}=\text{−}{ \csc }^{-1}t+C. Is it true, in general, that sec1t=csc1t?{ \sec }^{-1}t=\text{−}{ \csc }^{-1}t?

In the following exercises, compute the antiderivative using appropriate substitutions.

85. sin1tdt1t2\int \frac{{ \sin }^{-1}tdt}{\sqrt{1-{t}^{2}}}

Answer:

12(sin1t)2+C\frac{1}{2}{({ \sin }^{-1}t)}^{2}+C

86. dtsin1t1t2\int \frac{dt}{{ \sin }^{-1}t\sqrt{1-{t}^{2}}}

87. tan1(2t)1+4t2dt\int \frac{{ \tan }^{-1}(2t)}{1+4{t}^{2}}dt

Answer: 14(tan1(2t))2\frac{1}{4}{({ \tan }^{-1}(2t))}^{2}

88. ttan1(t2)1+t4dt\int \frac{t{ \tan }^{-1}({t}^{2})}{1+{t}^{4}}dt

89. sec1(t2)tt24dt\int \frac{{ \sec }^{-1}(\frac{t}{2})}{|t|\sqrt{{t}^{2}-4}}dt

Answer:

14(sec1(t2)2)+C\frac{1}{4}({ \sec }^{-1}{(\frac{t}{2})}^{2})+C

90. tsec1(t2)t2t41dt\int \frac{t{ \sec }^{-1}({t}^{2})}{{t}^{2}\sqrt{{t}^{4}-1}}dt

In the following exercises, compute each integral using appropriate substitutions.

91. ex1e2tdt\int \frac{{e}^{x}}{\sqrt{1-{e}^{2t}}}dt

Answer:

sin1(et)+C{ \sin }^{-1}({e}^{t})+C

92. et1+e2tdt\int \frac{{e}^{t}}{1+{e}^{2t}}dt

93. dtt1ln2t\int \frac{dt}{t\sqrt{1-{\text{ln}}^{2}t}}

Answer:

sin1(lnt)+C{ \sin }^{-1}(\text{ln}t)+C

94. dtt(1+ln2t)\int \frac{dt}{t(1+{\text{ln}}^{2}t)}

95. cos1(2t)14t2dt\int \frac{{ \cos }^{-1}(2t)}{\sqrt{1-4{t}^{2}}}dt

Answer:

12(cos1(2t))2+C-\frac{1}{2}{({ \cos }^{-1}(2t))}^{2}+C

96. etcos1(et)1e2tdt\int \frac{{e}^{t}{ \cos }^{-1}({e}^{t})}{\sqrt{1-{e}^{2t}}}dt

97. For 1<B<,1<B<\infty , compute I(B)=1Bdttt21I(B)={\int }_{1}^{B}\frac{dt}{t\sqrt{{t}^{2}-1}} and evaluate limBI(B),\underset{B\to \infty }{\text{lim}}I(B), the area under the graph of 1tt21\frac{1}{t\sqrt{{t}^{2}-1}} over [1,).[1,\infty ).

98. Use the substitution u=2cotxu=\sqrt{2} \cot x and the identity 1+cot2x=csc2x1+{ \cot }^{2}x={ \csc }^{2}x to evaluate dx1+cos2x.\int \frac{dx}{1+{ \cos }^{2}x}. (Hint: Multiply the top and bottom of the integrand by csc2x.{ \csc }^{2}x.)

Answer:

Using the hint, one has csc2xcsc2x+cot2xdx=csc2x1+2cot2xdx.\int \frac{{ \csc }^{2}x}{{ \csc }^{2}x+{ \cot }^{2}x}dx=\int \frac{{ \csc }^{2}x}{1+2{ \cot }^{2}x}dx. Set u=2cotx.u=\sqrt{2} \cot x. Then, du=2csc2xdu=\text{−}\sqrt{2}{ \csc }^{2}x and the integral is 12du1+u2=12tan1u+C=12tan1(2cotx)+C.-\frac{1}{\sqrt{2}}\int \frac{du}{1+{u}^{2}}=-\frac{1}{\sqrt{2}}{ \tan }^{-1}u+C=\frac{1}{\sqrt{2}}\phantom{\rule{0.05em}{0ex}}{ \tan }^{-1}(\sqrt{2} \cot x)+C. If one uses the identity tan1s+tan1(1s)=π2,{ \tan }^{-1}s+{ \tan }^{-1}(\frac{1}{s})=\frac{\pi }{2}, then this can also be written 12tan1(tanx2)+C.\frac{1}{\sqrt{2}}\phantom{\rule{0.05em}{0ex}}{ \tan }^{-1}(\frac{ \tan x}{\sqrt{2}})+C.

99. [T] Approximate the points at which the graphs of f(x)=2x21f(x)=2{x}^{2}-1 and g(x)=(1+4x2)3/2g(x)={(1+4{x}^{2})}^{-3\text{/}2} intersect, and approximate the area between their graphs accurate to three decimal places.

100. [T] Approximate the points at which the graphs of f(x)=x21f(x)={x}^{2}-1 and f(x)=x21f(x)={x}^{2}-1 intersect, and approximate the area between their graphs accurate to three decimal places.

Answer:

x±1.13525.x\approx ±1.13525. The left endpoint estimate with N=100N=100 is 2.796 and these decimals persist for N=500.N=500.

Glossary

change of variables
the substitution of a variable, such as uu, for an expression in the integrand
integration by substitution
a technique for integration that allows integration of functions that are the result of a chain-rule derivative