We've updated our
Privacy Policy effective December 15. Please read our updated Privacy Policy and tap

Study Guides > Calculus Volume 1

L’Hôpital’s Rule

Learning Objectives

  • Recognize when to apply L’Hôpital’s rule.
  • Identify indeterminate forms produced by quotients, products, subtractions, and powers, and apply L’Hôpital’s rule in each case.
  • Describe the relative growth rates of functions.

In this section, we examine a powerful tool for evaluating limits. This tool, known as L’Hôpital’s rule, uses derivatives to calculate limits. With this rule, we will be able to evaluate many limits we have not yet been able to determine. Instead of relying on numerical evidence to conjecture that a limit exists, we will be able to show definitively that a limit exists and to determine its exact value.

Applying L’Hôpital’s Rule

L’Hôpital’s rule can be used to evaluate limits involving the quotient of two functions. Consider

limxaf(x)g(x)\underset{x\to a}{\lim}\frac{f(x)}{g(x)}.

If limxaf(x)=L1\underset{x\to a}{\lim}f(x)=L_1 and limxag(x)=L20\underset{x\to a}{\lim}g(x)=L_2 \ne 0, then

limxaf(x)g(x)=L1L2\underset{x\to a}{\lim}\frac{f(x)}{g(x)}=\frac{L_1}{L_2}.

However, what happens if limxaf(x)=0\underset{x\to a}{\lim}f(x)=0 and limxag(x)=0\underset{x\to a}{\lim}g(x)=0? We call this one of the indeterminate forms, of type 00\frac{0}{0}. This is considered an indeterminate form because we cannot determine the exact behavior of f(x)g(x)\frac{f(x)}{g(x)} as xax\to a without further analysis. We have seen examples of this earlier in the text. For example, consider

limx2x24x2\underset{x\to 2}{\lim}\frac{x^2-4}{x-2} and limx0sinxx\underset{x\to 0}{\lim}\frac{ \sin x}{x}.

For the first of these examples, we can evaluate the limit by factoring the numerator and writing

limx2x24x2=limx2(x+2)(x2)x2=limx2(x+2)=2+2=4\underset{x\to 2}{\lim}\frac{x^2-4}{x-2}=\underset{x\to 2}{\lim}\frac{(x+2)(x-2)}{x-2}=\underset{x\to 2}{\lim}(x+2)=2+2=4.
For limx0sinxx\underset{x\to 0}{\lim}\frac{\sin x}{x} we were able to show, using a geometric argument, that
limx0sinxx=1\underset{x\to 0}{\lim}\frac{\sin x}{x}=1.

Here we use a different technique for evaluating limits such as these. Not only does this technique provide an easier way to evaluate these limits, but also, and more important, it provides us with a way to evaluate many other limits that we could not calculate previously.

The idea behind L’Hôpital’s rule can be explained using local linear approximations. Consider two differentiable functions ff and gg such that limxaf(x)=0=limxag(x)\underset{x\to a}{\lim}f(x)=0=\underset{x\to a}{\lim}g(x) and such that g(a)0g^{\prime}(a)\ne 0 For xx near aa, we can write

f(x)f(a)+f(a)(xa)f(x)\approx f(a)+f^{\prime}(a)(x-a)

and

g(x)g(a)+g(a)(xa)g(x)\approx g(a)+g^{\prime}(a)(x-a).

Therefore,

f(x)g(x)f(a)+f(a)(xa)g(a)+g(a)(xa)\frac{f(x)}{g(x)}\approx \frac{f(a)+f^{\prime}(a)(x-a)}{g(a)+g^{\prime}(a)(x-a)}.
Two functions y = f(x) and y = g(x) are drawn such that they cross at a point above x = a. The linear approximations of these two functions y = f(a) + f’(a)(x – a) and y = g(a) + g’(a)(x – a) are also drawn. Figure 1. If limxaf(x)=limxag(x)\underset{x\to a}{\lim}f(x)=\underset{x\to a}{\lim}g(x), then the ratio f(x)/g(x)f(x)/g(x) is approximately equal to the ratio of their linear approximations near aa.
Since ff is differentiable at aa, then ff is continuous at aa, and therefore f(a)=limxaf(x)=0f(a)=\underset{x\to a}{\lim}f(x)=0. Similarly, g(a)=limxag(x)=0g(a)=\underset{x\to a}{\lim}g(x)=0. If we also assume that ff^{\prime} and gg^{\prime} are continuous at x=ax=a, then f(a)=limxaf(x)f^{\prime}(a)=\underset{x\to a}{\lim}f^{\prime}(x) and g(a)=limxag(x)g^{\prime}(a)=\underset{x\to a}{\lim}g^{\prime}(x). Using these ideas, we conclude that
limxaf(x)g(x)=limxaf(x)(xa)g(x)(xa)=limxaf(x)g(x)\underset{x\to a}{\lim}\frac{f(x)}{g(x)}=\underset{x\to a}{\lim}\frac{f^{\prime}(x)(x-a)}{g^{\prime}(x)(x-a)}=\underset{x\to a}{\lim}\frac{f^{\prime}(x)}{g^{\prime}(x)}.
Note that the assumption that ff^{\prime} and gg^{\prime} are continuous at aa and g(a)0g^{\prime}(a)\ne 0 can be loosened. We state L’Hôpital’s rule formally for the indeterminate form 00\frac{0}{0}. Also note that the notation 00\frac{0}{0} does not mean we are actually dividing zero by zero. Rather, we are using the notation 00\frac{0}{0} to represent a quotient of limits, each of which is zero.

L’Hôpital’s Rule (0/0 Case)

Suppose ff and gg are differentiable functions over an open interval containing aa, except possibly at aa. If limxaf(x)=0\underset{x\to a}{\lim}f(x)=0 and limxag(x)=0\underset{x\to a}{\lim}g(x)=0, then

limxaf(x)g(x)=limxaf(x)g(x)\underset{x\to a}{\lim}\frac{f(x)}{g(x)}=\underset{x\to a}{\lim}\frac{f^{\prime}(x)}{g^{\prime}(x)},

assuming the limit on the right exists or is \infty or −\infty. This result also holds if we are considering one-sided limits, or if a=a=\infty or -\infty.

Proof

We provide a proof of this theorem in the special case when f,g,ff, \, g, \, f^{\prime}, and gg^{\prime} are all continuous over an open interval containing aa. In that case, since limxaf(x)=0=limxag(x)\underset{x\to a}{\lim}f(x)=0=\underset{x\to a}{\lim}g(x) and ff and gg are continuous at aa, it follows that f(a)=0=g(a)f(a)=0=g(a). Therefore,

limxaf(x)g(x)=limxaf(x)f(a)g(x)g(a)sincef(a)=0=g(a)=limxaf(x)f(a)xag(x)g(a)xamultiplying numerator and denominator by1xa=limxaf(x)f(a)xalimxag(x)g(a)xalimit of a quotient=f(a)g(a)definition of the derivative=limxaf(x)limxag(x)continuity offandg=limxaf(x)g(x)limit of a quotient\begin{array}{lllll} \underset{x\to a}{\lim}\frac{f(x)}{g(x)} & =\underset{x\to a}{\lim}\frac{f(x)-f(a)}{g(x)-g(a)} & & & \text{since} \, f(a)=0=g(a) \\ & =\underset{x\to a}{\lim}\frac{\frac{f(x)-f(a)}{x-a}}{\frac{g(x)-g(a)}{x-a}} & & & \text{multiplying numerator and denominator by} \, \frac{1}{x-a} \\ & =\frac{\underset{x\to a}{\lim}\frac{f(x)-f(a)}{x-a}}{\underset{x\to a}{\lim}\frac{g(x)-g(a)}{x-a}} & & & \text{limit of a quotient} \\ & =\frac{f^{\prime}(a)}{g^{\prime}(a)} & & & \text{definition of the derivative} \\ & =\frac{\underset{x\to a}{\lim}f^{\prime}(x)}{\underset{x\to a}{\lim}g^{\prime}(x)} & & & \text{continuity of} \, f^{\prime} \, \text{and} \, g^{\prime} \\ & =\underset{x\to a}{\lim}\frac{f^{\prime}(x)}{g^{\prime}(x)} & & & \text{limit of a quotient} \end{array}

Note that L’Hôpital’s rule states we can calculate the limit of a quotient fg\frac{f}{g} by considering the limit of the quotient of the derivatives fg\frac{f^{\prime}}{g^{\prime}}. It is important to realize that we are not calculating the derivative of the quotient fg\frac{f}{g}.

Applying L’Hôpital’s Rule (0/0 Case)

Evaluate each of the following limits by applying L’Hôpital’s rule.

  1. limx01cosxx\underset{x\to 0}{\lim}\frac{1- \cos x}{x}
  2. limx1sin(πx)lnx\underset{x\to 1}{\lim}\frac{\sin (\pi x)}{\ln x}
  3. limxe1/x11/x\underset{x\to \infty }{\lim}\frac{e^{1/x}-1}{1/x}
  4. limx0sinxxx2\underset{x\to 0}{\lim}\frac{\sin x-x}{x^2}

Answer:

  1. Since the numerator 1cosx01- \cos x\to 0 and the denominator x0x\to 0, we can apply L’Hôpital’s rule to evaluate this limit. We have
    limx01cosxx=limx0ddx(1cosx)ddx(x)=limx0sinx1=limx0(sinx)limx0(1)=01=0\begin{array}{ll} \underset{x\to 0}{\lim}\frac{1- \cos x}{x} & =\underset{x\to 0}{\lim}\frac{\frac{d}{dx}(1- \cos x)}{\frac{d}{dx}(x)} \\ & =\underset{x\to 0}{\lim}\frac{\sin x}{1} \\ & =\frac{\underset{x\to 0}{\lim}(\sin x)}{\underset{x\to 0}{\lim}(1)} \\ & =\frac{0}{1}=0 \end{array}
  2. As x1x\to 1, the numerator sin(πx)0\sin (\pi x)\to 0 and the denominator lnx0\ln x \to 0. Therefore, we can apply L’Hôpital’s rule. We obtain
    limx1sin(πx)lnx=limx1πcos(πx)1/x=limx1(πx)cos(πx)=(π1)(1)=π\begin{array}{ll} \underset{x\to 1}{\lim}\frac{\sin (\pi x)}{\ln x} & =\underset{x\to 1}{\lim}\frac{\pi \cos (\pi x)}{1/x} \\ & =\underset{x\to 1}{\lim}(\pi x) \cos (\pi x) \\ & =(\pi \cdot 1)(-1)=−\pi \end{array}
  3. As xx\to \infty, the numerator e1/x10e^{1/x}-1\to 0 and the denominator (1x)0(\frac{1}{x})\to 0. Therefore, we can apply L’Hôpital’s rule. We obtain
    limxe1/x11x=limxe1/x(1x2)(1x2)=limxe1/x=e0=1\underset{x\to \infty }{\lim}\frac{e^{1/x}-1}{\frac{1}{x}}=\underset{x\to \infty }{\lim}\frac{e^{1/x}(\frac{-1}{x^2})}{(\frac{-1}{x^2})}=\underset{x\to \infty}{\lim} e^{1/x}=e^0=1
  4. As x0x\to 0, both the numerator and denominator approach zero. Therefore, we can apply L’Hôpital’s rule. We obtain
    limx0sinxxx2=limx0cosx12x\underset{x\to 0}{\lim}\frac{\sin x-x}{x^2}=\underset{x\to 0}{\lim}\frac{\cos x-1}{2x}.
    Since the numerator and denominator of this new quotient both approach zero as x0x\to 0, we apply L’Hôpital’s rule again. In doing so, we see that
    limx0cosx12x=limx0sinx2=0\underset{x\to 0}{\lim}\frac{\cos x-1}{2x}=\underset{x\to 0}{\lim}\frac{−\sin x}{2}=0.
    Therefore, we conclude that
    limx0sinxxx2=0\underset{x\to 0}{\lim}\frac{\sin x-x}{x^2}=0.

Evaluate limx0xtanx\underset{x\to 0}{\lim}\frac{x}{\tan x}.

Answer:

1

Hint

ddxtanx=sec2x\frac{d}{dx} \tan x= \sec ^2 x

We can also use L’Hôpital’s rule to evaluate limits of quotients f(x)g(x)\frac{f(x)}{g(x)} in which f(x)±f(x)\to \pm \infty and g(x)±g(x)\to \pm \infty. Limits of this form are classified as indeterminate forms of type /\infty / \infty. Again, note that we are not actually dividing \infty by \infty. Since \infty is not a real number, that is impossible; rather, /\infty / \infty is used to represent a quotient of limits, each of which is \infty or −\infty.

L’Hôpital’s Rule (/\infty / \infty Case)

Suppose ff and gg are differentiable functions over an open interval containing aa, except possibly at aa. Suppose limxaf(x)=\underset{x\to a}{\lim}f(x)=\infty (or −\infty) and limxag(x)=\underset{x\to a}{\lim}g(x)=\infty (or −\infty). Then,

limxaf(x)g(x)=limxaf(x)g(x)\underset{x\to a}{\lim}\frac{f(x)}{g(x)}=\underset{x\to a}{\lim}\frac{f^{\prime}(x)}{g^{\prime}(x)},

assuming the limit on the right exists or is \infty or −\infty. This result also holds if the limit is infinite, if a=a=\infty or −\infty, or the limit is one-sided.

Applying L’Hôpital’s Rule (/\infty /\infty Case)

Evaluate each of the following limits by applying L’Hôpital’s rule.

  1. limx3x+52x+1\underset{x\to \infty }{\lim}\frac{3x+5}{2x+1}
  2. limx0+lnxcotx\underset{x\to 0^+}{\lim}\frac{\ln x}{\cot x}

Answer:

  1. Since 3x+53x+5 and 2x+12x+1 are first-degree polynomials with positive leading coefficients, limx(3x+5)=\underset{x\to \infty }{\lim}(3x+5)=\infty and limx(2x+1)=\underset{x\to \infty }{\lim}(2x+1)=\infty. Therefore, we apply L’Hôpital’s rule and obtain
    limx3x+52x+1=limx32=32\underset{x\to \infty}{\lim}\frac{3x+5}{2x+1}=\underset{x\to \infty }{\lim}\frac{3}{2}=\frac{3}{2}.
    Note that this limit can also be calculated without invoking L’Hôpital’s rule. Earlier in the chapter we showed how to evaluate such a limit by dividing the numerator and denominator by the highest power of xx in the denominator. In doing so, we saw that
    limx3x+52x+1=limx3+5/x2+1/x=32\underset{x\to \infty }{\lim}\frac{3x+5}{2x+1}=\underset{x\to \infty }{\lim}\frac{3+5/x}{2+1/x}=\frac{3}{2}.
    L’Hôpital’s rule provides us with an alternative means of evaluating this type of limit.
  2. Here, limx0+lnx=\underset{x\to 0^+}{\lim} \ln x=−\infty and limx0+cotx=\underset{x\to 0^+}{\lim} \cot x=\infty. Therefore, we can apply L’Hôpital’s rule and obtain
    limx0+lnxcotx=limx0+1/xcsc2x=limx0+1xcsc2x\underset{x\to 0^+}{\lim}\frac{\ln x}{\cot x}=\underset{x\to 0^+}{\lim}\frac{1/x}{−\csc^2 x}=\underset{x\to 0^+}{\lim}\frac{1}{−x \csc^2 x}.
    Now as x0+x\to 0^+, csc2x\csc^2 x\to \infty. Therefore, the first term in the denominator is approaching zero and the second term is getting really large. In such a case, anything can happen with the product. Therefore, we cannot make any conclusion yet. To evaluate the limit, we use the definition of cscx\csc x to write
    limx0+1xcsc2x=limx0+sin2xx\underset{x\to 0^+}{\lim}\frac{1}{−x \csc^2 x}=\underset{x\to 0^+}{\lim}\frac{\sin^2 x}{−x}.
    Now limx0+sin2x=0\underset{x\to 0^+}{\lim} \sin^2 x=0 and limx0+x=0\underset{x\to 0^+}{\lim} x=0, so we apply L’Hôpital’s rule again. We find
    limx0+sin2xx=limx0+2sinxcosx1=01=0\underset{x\to 0^+}{\lim}\frac{\sin^2 x}{−x}=\underset{x\to 0^+}{\lim}\frac{2 \sin x \cos x}{-1}=\frac{0}{-1}=0.
    We conclude that
    limx0+lnxcotx=0\underset{x\to 0^+}{\lim}\frac{\ln x}{\cot x}=0.

Evaluate limxlnx5x\underset{x\to \infty }{\lim}\frac{\ln x}{5x}.

Answer: 0

Hint

ddxlnx=1x\frac{d}{dx}\ln x=\frac{1}{x}

As mentioned, L’Hôpital’s rule is an extremely useful tool for evaluating limits. It is important to remember, however, that to apply L’Hôpital’s rule to a quotient f(x)g(x)\frac{f(x)}{g(x)}, it is essential that the limit of f(x)g(x)\frac{f(x)}{g(x)} be of the form 0/00/0 or /\infty / \infty Consider the following example.

When L’Hôpital’s Rule Does Not Apply

Consider limx1x2+53x+4\underset{x\to 1}{\lim}\frac{x^2+5}{3x+4}. Show that the limit cannot be evaluated by applying L’Hôpital’s rule.

Answer:

Because the limits of the numerator and denominator are not both zero and are not both infinite, we cannot apply L’Hôpital’s rule. If we try to do so, we get

ddx(x2+5)=2x\frac{d}{dx}(x^2+5)=2x

and

ddx(3x+4)=3\frac{d}{dx}(3x+4)=3.

At which point we would conclude erroneously that

limx1x2+53x+4=limx12x3=23\underset{x\to 1}{\lim}\frac{x^2+5}{3x+4}=\underset{x\to 1}{\lim}\frac{2x}{3}=\frac{2}{3}.

However, since limx1(x2+5)=6\underset{x\to 1}{\lim}(x^2+5)=6 and limx1(3x+4)=7\underset{x\to 1}{\lim}(3x+4)=7, we actually have

limx1x2+53x+4=67\underset{x\to 1}{\lim}\frac{x^2+5}{3x+4}=\frac{6}{7}.

We can conclude that

limx1x2+53x+4limx1ddx(x2+5)ddx(3x+4)\underset{x\to 1}{\lim}\frac{x^2+5}{3x+4}\ne \underset{x\to 1}{\lim}\frac{\frac{d}{dx}(x^2+5)}{\frac{d}{dx}(3x+4)}.

Explain why we cannot apply L’Hôpital’s rule to evaluate limx0+cosxx\underset{x\to 0^+}{\lim}\frac{\cos x}{x}. Evaluate limx0+cosxx\underset{x\to 0^+}{\lim}\frac{\cos x}{x} by other means.

Answer:

limx0+cosx=1\underset{x\to 0^+}{\lim} \cos x=1. Therefore, we cannot apply L’Hôpital’s rule. The limit of the quotient is \infty

Hint

Determine the limits of the numerator and denominator separately.

Other Indeterminate Forms

L’Hôpital’s rule is very useful for evaluating limits involving the indeterminate forms 0/00/0 and /\infty / \infty. However, we can also use L’Hôpital’s rule to help evaluate limits involving other indeterminate forms that arise when evaluating limits. The expressions 00 \cdot \infty, \infty - \infty, 11^{\infty}, 0\infty^0, and 000^0 are all considered indeterminate forms. These expressions are not real numbers. Rather, they represent forms that arise when trying to evaluate certain limits. Next we realize why these are indeterminate forms and then understand how to use L’Hôpital’s rule in these cases. The key idea is that we must rewrite the indeterminate forms in such a way that we arrive at the indeterminate form 0/00/0 or /\infty / \infty.

Indeterminate Form of Type 00 \cdot \infty

Suppose we want to evaluate limxa(f(x)g(x))\underset{x\to a}{\lim}(f(x) \cdot g(x)), where f(x)0f(x)\to 0 and g(x)g(x)\to \infty (or −\infty) as xax\to a. Since one term in the product is approaching zero but the other term is becoming arbitrarily large (in magnitude), anything can happen to the product. We use the notation 00 \cdot \infty to denote the form that arises in this situation. The expression 00 \cdot \infty is considered indeterminate because we cannot determine without further analysis the exact behavior of the product f(x)g(x)f(x)g(x) as xx\to \infty. For example, let nn be a positive integer and consider

f(x)=1(xn+1)f(x)=\frac{1}{(x^n+1)} and g(x)=3x2g(x)=3x^2.

As xx\to \infty, f(x)0f(x)\to 0 and g(x)g(x)\to \infty. However, the limit as xx\to \infty of f(x)g(x)=3x2(xn+1)f(x)g(x)=\frac{3x^2}{(x^n+1)} varies, depending on nn. If n=2n=2, then limxf(x)g(x)=3\underset{x\to \infty }{\lim}f(x)g(x)=3. If n=1n=1, then limxf(x)g(x)=\underset{x\to \infty }{\lim}f(x)g(x)=\infty. If n=3n=3, then limxf(x)g(x)=0\underset{x\to \infty }{\lim}f(x)g(x)=0. Here we consider another limit involving the indeterminate form 00 \cdot \infty and show how to rewrite the function as a quotient to use L’Hôpital’s rule.

Indeterminate Form of Type 00·\infty

Evaluate limx0+xlnx\underset{x\to 0^+}{\lim}x \ln x.

Answer:

First, rewrite the function xlnxx \ln x as a quotient to apply L’Hôpital’s rule. If we write

xlnx=lnx1/xx \ln x=\frac{\ln x}{1/x},

we see that lnx\ln x\to −\infty as x0+x\to 0^+ and 1x\frac{1}{x}\to \infty as x0+x\to 0^+. Therefore, we can apply L’Hôpital’s rule and obtain

limx0+lnx1/x=limx0+ddx(lnx)ddx(1/x)=limx0+1/x1/x2=limx0+(x)=0\underset{x\to 0^+}{\lim}\frac{\ln x}{1/x}=\underset{x\to 0^+}{\lim}\frac{\frac{d}{dx}(\ln x)}{\frac{d}{dx}(1/x)}=\underset{x\to 0^+}{\lim}\frac{1/x}{-1/x^2}=\underset{x\to 0^+}{\lim}(−x)=0.

We conclude that

limx0+xlnx=0\underset{x\to 0^+}{\lim}x \ln x=0.
The function y = x ln(x) is graphed for values x ≥ 0. At x = 0, the value of the function is 0. Figure 2. Finding the limit at x=0x=0 of the function f(x)=xlnxf(x)=x \ln x.

Evaluate limx0xcotx\underset{x\to 0}{\lim}x \cot x.

Answer:

1

Hint

Write xcotx=xcosxsinxx \cot x=\frac{x \cos x}{\sin x}

Indeterminate Form of Type \infty -\infty

Another type of indeterminate form is \infty -\infty. Consider the following example. Let nn be a positive integer and let f(x)=3xnf(x)=3x^n and g(x)=3x2+5g(x)=3x^2+5. As xx\to \infty, f(x)f(x)\to \infty and g(x)g(x)\to \infty . We are interested in limx(f(x)g(x))\underset{x\to \infty}{\lim}(f(x)-g(x)). Depending on whether f(x)f(x) grows faster, g(x)g(x) grows faster, or they grow at the same rate, as we see next, anything can happen in this limit. Since f(x)f(x)\to \infty and g(x)g(x)\to \infty, we write \infty -\infty to denote the form of this limit. As with our other indeterminate forms, \infty -\infty has no meaning on its own and we must do more analysis to determine the value of the limit. For example, suppose the exponent nn in the function f(x)=3xnf(x)=3x^n is n=3n=3, then

limx(f(x)g(x))=limx(3x33x25)=\underset{x\to \infty }{\lim}(f(x)-g(x))=\underset{x\to \infty }{\lim}(3x^3-3x^2-5)=\infty.

On the other hand, if n=2n=2, then

limx(f(x)g(x))=limx(3x23x25)=5\underset{x\to \infty }{\lim}(f(x)-g(x))=\underset{x\to \infty }{\lim}(3x^2-3x^2-5)=-5.

However, if n=1n=1, then

limx(f(x)g(x))=limx(3x3x25)=\underset{x\to \infty }{\lim}(f(x)-g(x))=\underset{x\to \infty }{\lim}(3x-3x^2-5)=−\infty.

Therefore, the limit cannot be determined by considering only \infty -\infty. Next we see how to rewrite an expression involving the indeterminate form \infty -\infty as a fraction to apply L’Hôpital’s rule.

Indeterminate Form of Type \infty -\infty

Evaluate limx0+(1x21tanx)\underset{x\to 0^+}{\lim}(\frac{1}{x^2}-\frac{1}{\tan x}).

Answer:

By combining the fractions, we can write the function as a quotient. Since the least common denominator is x2tanxx^2 \tan x, we have

1x21tanx=(tanx)x2x2tanx\frac{1}{x^2}-\frac{1}{\tan x}=\frac{(\tan x)-x^2}{x^2 \tan x}.

As x0+x\to 0^+, the numerator tanxx20\tan x-x^2 \to 0 and the denominator x2tanx0x^2 \tan x \to 0. Therefore, we can apply L’Hôpital’s rule. Taking the derivatives of the numerator and the denominator, we have

limx0+(tanx)x2x2tanx=limx0+(sec2x)2xx2sec2x+2xtanx\underset{x\to 0^+}{\lim}\frac{(\tan x)-x^2}{x^2 \tan x}=\underset{x\to 0^+}{\lim}\frac{(\sec^2 x)-2x}{x^2 \sec^2 x+2x \tan x}.

As x0+x\to 0^+, (sec2x)2x1(\sec^2 x)-2x \to 1 and x2sec2x+2xtanx0x^2 \sec^2 x+2x \tan x \to 0. Since the denominator is positive as xx approaches zero from the right, we conclude that

limx0+(sec2x)2xx2sec2x+2xtanx=\underset{x\to 0^+}{\lim}\frac{(\sec^2 x)-2x}{x^2 \sec^2 x+2x \tan x}=\infty.

Therefore,

limx0+(1x21tanx)=\underset{x\to 0^+}{\lim}(\frac{1}{x^2}-\frac{1}{ tan x})=\infty.

Evaluate limx0+(1x1sinx)\underset{x\to 0^+}{\lim}(\frac{1}{x}-\frac{1}{\sin x}).

Answer:

0

Hint

Rewrite the difference of fractions as a single fraction.

Another type of indeterminate form that arises when evaluating limits involves exponents. The expressions 000^0, 0\infty^0, and 11^{\infty} are all indeterminate forms. On their own, these expressions are meaningless because we cannot actually evaluate these expressions as we would evaluate an expression involving real numbers. Rather, these expressions represent forms that arise when finding limits. Now we examine how L’Hôpital’s rule can be used to evaluate limits involving these indeterminate forms.

Since L’Hôpital’s rule applies to quotients, we use the natural logarithm function and its properties to reduce a problem evaluating a limit involving exponents to a related problem involving a limit of a quotient. For example, suppose we want to evaluate limxaf(x)g(x)\underset{x\to a}{\lim}f(x)^{g(x)} and we arrive at the indeterminate form 0\infty^0. (The indeterminate forms 000^0 and 11^{\infty} can be handled similarly.) We proceed as follows. Let

y=f(x)g(x)y=f(x)^{g(x)}.

Then,

lny=ln(f(x)g(x))=g(x)ln(f(x))\ln y=\ln (f(x)^{g(x)})=g(x) \ln (f(x)).

Therefore,

limxa[lny]=limxa[g(x)ln(f(x))]\underset{x\to a}{\lim}[\ln y]=\underset{x\to a}{\lim}[g(x) \ln (f(x))].

Since limxaf(x)=\underset{x\to a}{\lim}f(x)=\infty, we know that limxaln(f(x))=\underset{x\to a}{\lim}\ln (f(x))=\infty. Therefore, limxag(x)ln(f(x))\underset{x\to a}{\lim}g(x) \ln (f(x)) is of the indeterminate form 00 \cdot \infty, and we can use the techniques discussed earlier to rewrite the expression g(x)ln(f(x))g(x) \ln (f(x)) in a form so that we can apply L’Hôpital’s rule. Suppose limxag(x)ln(f(x))=L\underset{x\to a}{\lim}g(x) \ln (f(x))=L, where LL may be \infty or −\infty. Then

limxalny=L\underset{x\to a}{\lim}\ln y=L.

Since the natural logarithm function is continuous, we conclude that

ln(limxay)=L\ln (\underset{x\to a}{\lim} y)=L

which gives us

limxay=limxaf(x)g(x)=eL\underset{x\to a}{\lim} y=\underset{x\to a}{\lim}f(x)^{g(x)}=e^L.

Indeterminate Form of Type 0\infty^0

Evaluate limxx1/x\underset{x\to \infty }{\lim} x^{1/x}.

Answer:

Let y=x1/xy=x^{1/x}. Then,

ln(x1/x)=1xlnx=lnxx\ln (x^{1/x})=\frac{1}{x} \ln x=\frac{\ln x}{x}.

We need to evaluate limxlnxx\underset{x\to \infty }{\lim}\frac{\ln x}{x}. Applying L’Hôpital’s rule, we obtain

limxlny=limxlnxx=limx1/x1=0\underset{x\to \infty }{\lim} \ln y=\underset{x\to \infty}{\lim}\frac{\ln x}{x}=\underset{x\to \infty}{\lim}\frac{1/x}{1}=0.

Therefore, limxlny=0\underset{x\to \infty }{\lim}\ln y=0. Since the natural logarithm function is continuous, we conclude that

ln(limxy)=0\ln (\underset{x\to \infty}{\lim} y)=0,

which leads to

limxy=limxlnxx=e0=1\underset{x\to \infty }{\lim} y=\underset{x\to \infty}{\lim}\frac{\ln x}{x}=e^0=1.

Hence,

limxx1/x=1\underset{x\to \infty}{\lim} x^{1/x}=1.

Evaluate limxx1/lnx\underset{x\to \infty}{\lim} x^{1/ \ln x}.

Answer:

ee

Hint

Let y=x1/lnxy=x^{1/ \ln x} and apply the natural logarithm to both sides of the equation.

Indeterminate Form of Type 000^0

Evaluate limx0+xsinx\underset{x\to 0^+}{\lim} x^{\sin x}.

Answer:

Let

y=xsinxy=x^{\sin x}.

Therefore,

lny=ln(xsinx)=sinxlnx\ln y=\ln (x^{\sin x})= \sin x \ln x.

We now evaluate limx0+sinxlnx\underset{x\to 0^+}{\lim} \sin x \ln x. Since limx0+sinx=0\underset{x\to 0^+}{\lim} \sin x=0 and limx0+lnx=\underset{x\to 0^+}{\lim} \ln x=−\infty, we have the indeterminate form 00 \cdot \infty. To apply L’Hôpital’s rule, we need to rewrite sinxlnx \sin x \ln x as a fraction. We could write

sinxlnx=sinx1/lnx \sin x \ln x=\frac{\sin x}{1/ \ln x}

or

sinxlnx=lnx1/sinx=lnxcscx \sin x \ln x=\frac{\ln x}{1/ \sin x}=\frac{\ln x}{\csc x}.

Let’s consider the first option. In this case, applying L’Hôpital’s rule, we would obtain

limx0+sinxlnx=limx0+sinx1/lnx=limx0+cosx1/(x(lnx)2)=limx0+(x(lnx)2cosx)\underset{x\to 0^+}{\lim} \sin x \ln x=\underset{x\to 0^+}{\lim}\frac{\sin x}{1/ \ln x}=\underset{x\to 0^+}{\lim}\frac{\cos x}{-1/(x(\ln x)^2)}=\underset{x\to 0^+}{\lim}(−x(\ln x)^2 \cos x).

Unfortunately, we not only have another expression involving the indeterminate form 00 \cdot \infty, but the new limit is even more complicated to evaluate than the one with which we started. Instead, we try the second option. By writing

sinxlnx=lnx1/sinx=lnxcscx \sin x \ln x=\frac{\ln x}{1/ \sin x}=\frac{\ln x}{\csc x}

and applying L’Hôpital’s rule, we obtain

limx0+sinxlnx=limx0+lnxcscx=limx0+1/xcscxcotx=limx0+1xcscxcotx\underset{x\to 0^+}{\lim} \sin x \ln x=\underset{x\to 0^+}{\lim}\frac{\ln x}{\csc x}=\underset{x\to 0^+}{\lim}\frac{1/x}{− \csc x \cot x}=\underset{x\to 0^+}{\lim}\frac{-1}{x \csc x \cot x}.

Using the fact that cscx=1sinx\csc x=\frac{1}{\sin x} and cotx=cosxsinx\cot x=\frac{\cos x}{\sin x}, we can rewrite the expression on the right-hand side as

limx0+sin2xxcosx=limx0+[sinxx(tanx)]=(limx0+sinxx)(limx0+(tanx))=10=0\underset{x\to 0^+}{\lim}\frac{−\sin^2 x}{x \cos x}=\underset{x\to 0^+}{\lim}[\frac{\sin x}{x} \cdot (−\tan x)]=(\underset{x\to 0^+}{\lim}\frac{\sin x}{x}) \cdot (\underset{x\to 0^+}{\lim}(−\tan x))=1 \cdot 0=0.

We conclude that limx0+lny=0\underset{x\to 0^+}{\lim} \ln y=0. Therefore, ln(limx0+y)=0\ln (\underset{x\to 0^+}{\lim} y)=0 and we have

limx0+y=limx0+xsinx=e0=1\underset{x\to 0^+}{\lim} y=\underset{x\to 0^+}{\lim} x^{\sin x}=e^0=1.

Hence,

limx0+xsinx=1\underset{x\to 0^+}{\lim} x^{\sin x}=1.

Evaluate limx0+xx\underset{x\to 0^+}{\lim} x^x.

Answer:

1

Hint

Let y=xxy=x^x and take the natural logarithm of both sides of the equation.

Growth Rates of Functions

Suppose the functions ff and gg both approach infinity as xx\to \infty. Although the values of both functions become arbitrarily large as the values of xx become sufficiently large, sometimes one function is growing more quickly than the other. For example, f(x)=x2f(x)=x^2 and g(x)=x3g(x)=x^3 both approach infinity as xx\to \infty. However, as shown in the following table, the values of x3x^3 are growing much faster than the values of x2x^2.

Comparing the Growth Rates of x2x^2 and x3x^3
xx 10 100 1000 10,000
f(x)=x2f(x)=x^2 100 10,000 1,000,000 100,000,000
g(x)=x3g(x)=x^3 1000 1,000,000 1,000,000,000 1,000,000,000,0001,000,000,000,000

In fact,

limxx3x2=limxx=\underset{x\to \infty }{\lim}\frac{x^3}{x^2}=\underset{x\to \infty}{\lim} x=\infty or, equivalently, limxx2x3=limx1x=0\underset{x\to \infty}{\lim}\frac{x^2}{x^3}=\underset{x\to \infty }{\lim}\frac{1}{x}=0.

As a result, we say x3x^3 is growing more rapidly than x2x^2 as xx\to \infty. On the other hand, for f(x)=x2f(x)=x^2 and g(x)=3x2+4x+1g(x)=3x^2+4x+1, although the values of g(x)g(x) are always greater than the values of f(x)f(x) for x>0x>0, each value of g(x)g(x) is roughly three times the corresponding value of f(x)f(x) as xx\to \infty, as shown in the following table. In fact,

limxx23x2+4x+1=13\underset{x\to \infty }{\lim}\frac{x^2}{3x^2+4x+1}=\frac{1}{3}.
Comparing the Growth Rates of x2x^2 and 3x2+4x+13x^2+4x+1
xx 10 100 1000 10,000
f(x)=x2f(x)=x^2 100 10,000 1,000,000 100,000,000
g(x)=3x2+4x+1g(x)=3x^2+4x+1 341 30,401 3,004,001 300,040,001

In this case, we say that x2x^2 and 3x2+4x+13x^2+4x+1 are growing at the same rate as xx\to \infty.

More generally, suppose ff and gg are two functions that approach infinity as xx\to \infty. We say gg grows more rapidly than ff as xx\to \infty if

limxg(x)f(x)=\underset{x\to \infty }{\lim}\frac{g(x)}{f(x)}=\infty or, equivalently, limxf(x)g(x)=0\underset{x\to \infty }{\lim}\frac{f(x)}{g(x)}=0.

On the other hand, if there exists a constant M0M \ne 0 such that

limxf(x)g(x)=M\underset{x\to \infty }{\lim}\frac{f(x)}{g(x)}=M,

we say ff and gg grow at the same rate as xx\to \infty.

Next we see how to use L’Hôpital’s rule to compare the growth rates of power, exponential, and logarithmic functions.

Comparing the Growth Rates of lnx\ln x, x2x^2, and exe^x

For each of the following pairs of functions, use L’Hôpital’s rule to evaluate limx(f(x)g(x))\underset{x\to \infty }{\lim}(\frac{f(x)}{g(x)}).

  1. f(x)=x2f(x)=x^2 and g(x)=exg(x)=e^x
  2. f(x)=lnxf(x)=\ln x and g(x)=x2g(x)=x^2

Answer:

  1. Since limxx2=\underset{x\to \infty }{\lim} x^2=\infty and limxex\underset{x\to \infty }{\lim} e^x, we can use L’Hôpital’s rule to evaluate limx[x2ex]\underset{x\to \infty }{\lim}[\frac{x^2}{e^x}]. We obtain
    limxx2ex=limx2xex\underset{x\to \infty }{\lim}\frac{x^2}{e^x}=\underset{x\to \infty }{\lim}\frac{2x}{e^x}.
    Since limx2x=\underset{x\to \infty }{\lim}2x=\infty and limxex=\underset{x\to \infty }{\lim}e^x=\infty, we can apply L’Hôpital’s rule again. Since
    limx2xex=limx2ex=0\underset{x\to \infty }{\lim}\frac{2x}{e^x}=\underset{x\to \infty }{\lim}\frac{2}{e^x}=0,
    we conclude that
    limxx2ex=0\underset{x\to \infty }{\lim}\frac{x^2}{e^x}=0.
    Therefore, exe^x grows more rapidly than x2x^2 as xx\to \infty (See (Figure) and (Figure)).
    The functions g(x) = ex and f(x) = x2 are graphed. It is obvious that g(x) increases much more quickly than f(x). Figure 3. An exponential function grows at a faster rate than a power function.
    Growth rates of a power function and an exponential function.
    xx 5 10 15 20
    x2x^2 25 100 225 400
    exe^x 148 22,026 3,269,017 485,165,195
  2. Since limxlnx=\underset{x\to \infty }{\lim} \ln x=\infty and limxx2=\underset{x\to \infty }{\lim} x^2=\infty, we can use L’Hôpital’s rule to evaluate limxlnxx2\underset{x\to \infty }{\lim}\frac{\ln x}{x^2}. We obtain
    limxlnxx2=limx1/x2x=limx12x2=0\underset{x\to \infty }{\lim}\frac{\ln x}{x^2}=\underset{x\to \infty }{\lim}\frac{1/x}{2x}=\underset{x\to \infty }{\lim}\frac{1}{2x^2}=0.
    Thus, x2x^2 grows more rapidly than lnx\ln x as xx\to \infty (see (Figure) and (Figure)).
    The functions g(x) = x2 and f(x) = ln(x) are graphed. It is obvious that g(x) increases much more quickly than f(x). Figure 4. A power function grows at a faster rate than a logarithmic function.
    Growth rates of a power function and a logarithmic function
    xx 10 100 1000 10,000
    lnx\ln x 2.303 4.605 6.908 9.210
    x2x^2 100 10,000 1,000,000 100,000,000

Compare the growth rates of x100x^{100} and 2x2^x.

Answer:

The function 2x2^x grows faster than x100x^{100}.

Hint

Apply L’Hôpital’s rule to x100/2xx^{100}/2^x

Using the same ideas as in (Figure)a. it is not difficult to show that exe^x grows more rapidly than xpx^p for any p>0p>0. In (Figure) and (Figure), we compare exe^x with x3x^3 and x4x^4 as xx\to \infty.

This figure has two figures marked a and b. In figure a, the functions y = ex and y = x3 are graphed. It is obvious that ex increases more quickly than x3. In figure b, the functions y = ex and y = x4 are graphed. It is obvious that ex increases much more quickly than x4, but the point at which that happens is further to the right than it was for x3. Figure 5. The exponential function exe^x grows faster than xpx^p for any p>0p>0. (a) A comparison of exe^x with x3x^3. (b) A comparison of exe^x with x4x^4.
An exponential function grows at a faster rate than any power function
xx 5 10 15 20
x3x^3 125 1000 3375 8000
x4x^4 625 10,000 50,625 160,000
exe^x 148 22,026 3,269,017 485,165,195

Similarly, it is not difficult to show that xpx^p grows more rapidly than lnx\ln x for any p>0p>0. In (Figure) and (Figure), we compare lnx\ln x with x3\sqrt[3]{x} and x\sqrt{x}.

This figure shows y = the square root of x, y = the cube root of x, and y = ln(x). It is apparent that y = ln(x) grows more slowly than either of these functions. Figure 6. The function y=lnxy=\ln x grows more slowly than xpx^p for any p>0p>0 as xx\to \infty.
A logarithmic function grows at a slower rate than any root function
xx 10 100 1000 10,000
lnx\ln x 2.303 4.605 6.908 9.210
x3\sqrt[3]{x} 2.154 4.642 10 21.544
x\sqrt{x} 3.162 10 31.623 100

Key Concepts

  • L’Hôpital’s rule can be used to evaluate the limit of a quotient when the indeterminate form 0/00/0 or /\infty / \infty arises.
  • L’Hôpital’s rule can also be applied to other indeterminate forms if they can be rewritten in terms of a limit involving a quotient that has the indeterminate form 0/00/0 or /\infty / \infty.
  • The exponential function exe^x grows faster than any power function xpx^p, p>0p>0.
  • The logarithmic function lnx\ln x grows more slowly than any power function xpx^p, p>0p>0.

For the following exercises, evaluate the limit.

1. Evaluate the limit limxexx\underset{x\to \infty }{\lim}\frac{e^x}{x}.

2. Evaluate the limit limxexxk\underset{x\to \infty }{\lim}\frac{e^x}{x^k}.

Answer:

\infty

3. Evaluate the limit limxlnxxk\underset{x\to \infty }{\lim}\frac{\ln x}{x^k}.

4. Evaluate the limit limxaxax2a2\underset{x\to a}{\lim}\frac{x-a}{x^2-a^2}.

Answer:

12a\frac{1}{2a}

5. Evaluate the limit limxaxax3a3\underset{x\to a}{\lim}\frac{x-a}{x^3-a^3}.

6. Evaluate the limit limxaxaxnan\underset{x\to a}{\lim}\frac{x-a}{x^n-a^n}.

Answer:

1nan1\frac{1}{na^{n-1}}

For the following exercises, determine whether you can apply L’Hôpital’s rule directly. Explain why or why not. Then, indicate if there is some way you can alter the limit so you can apply L’Hôpital’s rule.

7. limx0+x2lnx\underset{x\to 0^+}{\lim}x^2 \ln x

8. limxx1/x\underset{x\to \infty }{\lim} x^{1/x}

Answer:

Cannot apply directly; use logarithms

9. limx0x2/x\underset{x\to 0}{\lim} x^{2/x}

10. limx0x21/x\underset{x\to 0}{\lim}\frac{x^2}{1/x}

Answer:

Cannot apply directly; rewrite as limx0x3\underset{x\to 0}{\lim} x^3

11. limxexx\underset{x\to \infty }{\lim}\frac{e^x}{x}

For the following exercises, evaluate the limits with either L’Hôpital’s rule or previously learned methods.

12. limx3x29x3\underset{x\to 3}{\lim}\frac{x^2-9}{x-3}

Answer:

6

13. limx3x29x+3\underset{x\to 3}{\lim}\frac{x^2-9}{x+3}

14. limx0(1+x)21x\underset{x\to 0}{\lim}\frac{(1+x)^{-2}-1}{x}

Answer:

-2

15. limxπ/2cosxπ/2x\underset{x\to \pi /2}{\lim}\frac{\cos x}{\pi / 2 - x}

16. limxπxπsinx\underset{x\to \pi }{\lim}\frac{x-\pi }{\sin x}

Answer:

-1

17. limx1x1sinx\underset{x\to 1}{\lim}\frac{x-1}{\sin x}

18. limx0(1+x)n1x\underset{x\to 0}{\lim}\frac{(1+x)^n-1}{x}

Answer:

nn

19. limx0(1+x)n1nxx2\underset{x\to 0}{\lim}\frac{(1+x)^n-1-nx}{x^2}

20. limx0sinxtanxx3\underset{x\to 0}{\lim}\frac{\sin x- \tan x}{x^3}

Answer:

12-\frac{1}{2}

21. limx01+x1xx\underset{x\to 0}{\lim}\frac{\sqrt{1+x}-\sqrt{1-x}}{x}

22. limx0exx1x2\underset{x\to 0}{\lim}\frac{e^x-x-1}{x^2}

Answer:

12\frac{1}{2}

23. limx0tanxx\underset{x\to 0}{\lim}\frac{\tan x}{\sqrt{x}}

24. limx1x1lnx\underset{x\to 1}{\lim}\frac{x-1}{\ln x}

Answer:

1

25. limx0(x+1)1/x\underset{x\to 0}{\lim}(x+1)^{1/x}

26. limx1xx3x1\underset{x\to 1}{\lim}\frac{\sqrt{x}-\sqrt[3]{x}}{x-1}

Answer:

16\frac{1}{6}

27. limx0+x2x\underset{x\to 0^+}{\lim} x^{2x}

28. limxxsin(1x)\underset{x\to \infty }{\lim} x \sin (\frac{1}{x})

Answer:

1

29. limx0sinxxx2\underset{x\to 0}{\lim}\frac{\sin x-x}{x^2}

30. limx0+xln(x4)\underset{x\to 0^+}{\lim} x \ln (x^4)

Answer:

0

31. limx(xex)\underset{x\to \infty }{\lim}(x-e^x)

32. limxx2ex\underset{x\to \infty }{\lim} x^2 e^{−x}

Answer: 0

33. limx03x2xx\underset{x\to 0}{\lim}\frac{3^x-2^x}{x}

34. limx01+1/x11/x\underset{x\to 0}{\lim}\frac{1+1/x}{1-1/x}

Answer:

-1

35. limxπ/4(1tanx)cotx\underset{x\to \pi /4}{\lim}(1- \tan x) \cot x

36. limxxe1/x\underset{x\to \infty }{\lim} xe^{1/x}

Answer:

\infty

37. limx0x1/cosx\underset{x\to 0}{\lim} x^{1/ \cos x}

38. limx0x1/x\underset{x\to 0}{\lim} x^{1/x}

Answer: 1

39. limx0(11x)x\underset{x\to 0}{\lim} (1-\frac{1}{x})^x

40. limx(11x)x\underset{x\to \infty }{\lim} (1-\frac{1}{x})^x

Answer:

1e\frac{1}{e}

For the following exercises, use a calculator to graph the function and estimate the value of the limit, then use L’Hôpital’s rule to find the limit directly.

41. [T] limx0ex1x\underset{x\to 0}{\lim}\frac{e^x-1}{x}

42. [T] limx0xsin(1x)\underset{x\to 0}{\lim}x \sin (\frac{1}{x})

Answer:

0

43. [T] limx1x11cos(πx)\underset{x\to 1}{\lim}\frac{x-1}{1- \cos (\pi x)}

44. [T] limx1ex11x1\underset{x\to 1}{\lim}\frac{e^{x-1}-1}{x-1}

Answer: 1

45. [T] limx1(x1)2lnx\underset{x\to 1}{\lim}\frac{(x-1)^2}{\ln x}

46. [T] limxπ1+cosxsinx\underset{x\to \pi }{\lim}\frac{1+ \cos x}{ \sin x}

Answer:

0

47. [T] limx0(cscx1x)\underset{x\to 0}{\lim}( \csc x-\frac{1}{x})

48. [T] limx0+tan(xx)\underset{x\to 0^+}{\lim} \tan (x^x)

Answer:

tan(1) \tan (1)

49. [T] limx0+lnxsinx\underset{x\to 0^+}{\lim}\frac{\ln x}{ \sin x}

50. [T] limx0exexx\underset{x\to 0}{\lim}\frac{e^x-e^{−x}}{x}

Answer:

2

Glossary

indeterminate forms
when evaluating a limit, the forms 0/00/0, /\infty / \infty, 00 \cdot \infty, \infty -\infty, 000^0, 0\infty^0, and 11^{\infty} are considered indeterminate because further analysis is required to determine whether the limit exists and, if so, what its value is
L’Hôpital’s rule
if ff and gg are differentiable functions over an interval aa, except possibly at aa, and limxaf(x)=0=limxag(x)\underset{x\to a}{\lim} f(x)=0=\underset{x\to a}{\lim} g(x) or limxaf(x)\underset{x\to a}{\lim} f(x) and limxag(x)\underset{x\to a}{\lim} g(x) are infinite, then limxaf(x)g(x)=limxaf(x)g(x)\underset{x\to a}{\lim}\frac{f(x)}{g(x)}=\underset{x\to a}{\lim}\frac{f^{\prime}(x)}{g^{\prime}(x)}, assuming the limit on the right exists or is \infty or −\infty

Licenses & Attributions