Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral of-6x
\int\:-6xdx
(\partial)/(\partial x)(1/(sin(x)))
\frac{\partial\:}{\partial\:x}(\frac{1}{\sin(x)})
(\partial)/(\partial y)(3x-x^2y^2+2x^3y)
\frac{\partial\:}{\partial\:y}(3x-x^{2}y^{2}+2x^{3}y)
integral of 1/(3+4x^2)
\int\:\frac{1}{3+4x^{2}}dx
derivative of y=e^{x+2}
derivative\:y=e^{x+2}
sum from n=4 to infinity of (3/4)^{-n}
\sum\:_{n=4}^{\infty\:}(\frac{3}{4})^{-n}
(dy)/(dx)+y*(x^2-1)+x*y^6=0
\frac{dy}{dx}+y\cdot\:(x^{2}-1)+x\cdot\:y^{6}=0
derivative of (15x^7+27x^5/(3x))
\frac{d}{dx}(\frac{15x^{7}+27x^{5}}{3x})
y=x^{3x}
y=x^{3x}
derivative of x^2+y^2
derivative\:x^{2}+y^{2}
x(dy)/(dx)-3y=7x^4,y(1)=2
x\frac{dy}{dx}-3y=7x^{4},y(1)=2
tangent of f(x)= x/(x-3)
tangent\:f(x)=\frac{x}{x-3}
integral of ln(x^2-x-6)
\int\:\ln(x^{2}-x-6)dx
limit as x approaches 4+of x+sqrt(x-4)
\lim\:_{x\to\:4+}(x+\sqrt{x-4})
derivative of 2^{3x-4}
derivative\:2^{3x-4}
laplacetransform t-1
laplacetransform\:t-1
limit as p approaches infinity of (sqrt(p+1\sqrt{p+1)})/(sqrt(p+1))
\lim\:_{p\to\:\infty\:}(\frac{\sqrt{p+1\sqrt{p+1}}}{\sqrt{p+1}})
derivative of (e^{6x}/(x^2+5))
\frac{d}{dx}(\frac{e^{6x}}{x^{2}+5})
derivative of f(t)=(2t-1)^7+14t(2t-1)^6
derivative\:f(t)=(2t-1)^{7}+14t(2t-1)^{6}
y^'=(x+y-4)^2,y(0)=0
y^{\prime\:}=(x+y-4)^{2},y(0)=0
inverse oflaplace (10)/((2s+3))
inverselaplace\:\frac{10}{(2s+3)}
simplify (x^4)/4+1/(8x^2)
simplify\:\frac{x^{4}}{4}+\frac{1}{8x^{2}}
derivative of (x^2-x+1^{-7})
\frac{d}{dx}((x^{2}-x+1)^{-7})
integral of e^{-3x}sin(3x)
\int\:e^{-3x}\sin(3x)dx
(\partial)/(\partial y)(sin(x-y))
\frac{\partial\:}{\partial\:y}(\sin(x-y))
derivative of 2x^2-4x+6
\frac{d}{dx}(2x^{2}-4x+6)
derivative of y=-3-2e^x
derivative\:y=-3-2e^{x}
integral of ln((2x)^2)
\int\:\ln((2x)^{2})dx
integral of 1/(7x^2-14x+28)
\int\:\frac{1}{7x^{2}-14x+28}dx
derivative of y= 4/(x-2)
derivative\:y=\frac{4}{x-2}
integral of e^{sin(t)}cos(t)
\int\:e^{\sin(t)}\cos(t)dt
integral of 7x+3
\int\:7x+3dx
sum from n=1 to infinity}(n^2x^{4n of)/(5^{4n)}
\sum\:_{n=1}^{\infty\:}\frac{n^{2}x^{4n}}{5^{4n}}
integral of ((sqrt(x)+4)^4)/(2sqrt(x))
\int\:\frac{(\sqrt{x}+4)^{4}}{2\sqrt{x}}dx
limit as x approaches-0+of 1/(3x)
\lim\:_{x\to\:-0+}(\frac{1}{3x})
derivative of (3x^2-13^3)
\frac{d}{dx}((3x^{2}-13)^{3})
integral of-2pitan^5(pix)sec^3(pix)
\int\:-2π\tan^{5}(πx)\sec^{3}(πx)dx
derivative of y=-tcos(t)-t
derivative\:y=-t\cos(t)-t
derivative of sin(xln(sec(x)+tan(x))-1)
\frac{d}{dx}(\sin(x)\ln(\sec(x)+\tan(x))-1)
integral from-2 to 2 of 1/(y^2-9)
\int\:_{-2}^{2}\frac{1}{y^{2}-9}dy
derivative of (sin(x)/(y^2))
\frac{d}{dx}(\frac{\sin(x)}{y^{2}})
derivative of 1/(2sqrt(x))+1/(5x^{4/5)}
derivative\:\frac{1}{2\sqrt{x}}+\frac{1}{5x^{\frac{4}{5}}}
integral from 0 to 1 of t/(t^2+1)
\int\:_{0}^{1}\frac{t}{t^{2}+1}dt
derivative of 3*ln(x)
\frac{d}{dx}(3\cdot\:\ln(x))
derivative of-7sqrt(x)
\frac{d}{dx}(-7\sqrt{x})
(\partial)/(\partial v)(uv-v)
\frac{\partial\:}{\partial\:v}(uv-v)
laplacetransform (1+e^{2t})^2
laplacetransform\:(1+e^{2t})^{2}
integral of x^2cosh(mx)
\int\:x^{2}\cosh(mx)dx
(\partial)/(\partial x)(2x^4y^5+3x^3y^5)
\frac{\partial\:}{\partial\:x}(2x^{4}y^{5}+3x^{3}y^{5})
2y^{''}+12y^'+50y=0
2y^{\prime\:\prime\:}+12y^{\prime\:}+50y=0
derivative of-(13)/(s^6)
derivative\:-\frac{13}{s^{6}}
integral of e^{5θ}
\int\:e^{5θ}dθ
integral of-cos^2(2x)
\int\:-\cos^{2}(2x)dx
y^'+t^2=0
y^{\prime\:}+t^{2}=0
integral of cos^2(2x)sin(2x)
\int\:\cos^{2}(2x)\sin(2x)dx
(dy)/(dx)=-(y^2)/(1+y^2)e^{-x}
\frac{dy}{dx}=-\frac{y^{2}}{1+y^{2}}e^{-x}
d/(dt)(3-t)
\frac{d}{dt}(3-t)
limit as x approaches 1+of sqrt(1-x^2)
\lim\:_{x\to\:1+}(\sqrt{1-x^{2}})
integral from 1/7 to 3 of 6xln(7x)
\int\:_{\frac{1}{7}}^{3}6x\ln(7x)dx
derivative of 3e^x+x
derivative\:3e^{x}+x
(d^2y)/(dx^2)-8x^2=0
\frac{d^{2}y}{dx^{2}}-8x^{2}=0
t*(dy)/(dt)=t^3+13t^3y
t\cdot\:\frac{dy}{dt}=t^{3}+13t^{3}y
integral of e^xcos(2e^x)
\int\:e^{x}\cos(2e^{x})dx
(d^2)/(dx^2)(x^9e^x)
\frac{d^{2}}{dx^{2}}(x^{9}e^{x})
integral of 5tsin^2(t)
\int\:5t\sin^{2}(t)dt
integral of 12x^2+6x-5
\int\:12x^{2}+6x-5dx
integral from 0 to pi/4 of tan^8(θ)sec^2(θ)
\int\:_{0}^{\frac{π}{4}}\tan^{8}(θ)\sec^{2}(θ)dθ
derivative of (e^x)/(ln(x))
derivative\:\frac{e^{x}}{\ln(x)}
derivative of xt
\frac{d}{dx}(xt)
limit as x approaches-2-of 1/(x-2)
\lim\:_{x\to\:-2-}(\frac{1}{x-2})
derivative of (3x^4-4(3-2x^3))
\frac{d}{dx}((3x^{4}-4)(3-2x^{3}))
integral of x^2sqrt(1+x)
\int\:x^{2}\sqrt{1+x}dx
derivative of y=xcos(x)sin(x)
derivative\:y=x\cos(x)\sin(x)
(\partial)/(\partial y)(4y(1/x-ln(x)))
\frac{\partial\:}{\partial\:y}(4y(\frac{1}{x}-\ln(x)))
integral from 0 to 9 of 1/(sqrt(x))
\int\:_{0}^{9}\frac{1}{\sqrt{x}}dx
area 3x^2,18x-21
area\:3x^{2},18x-21
derivative of y=sec(x)tan(x)
derivative\:y=\sec(x)\tan(x)
integral of 7e^{3x}
\int\:7e^{3x}dx
area sqrt(x-1),y=0,x=6
area\:\sqrt{x-1},y=0,x=6
f(t)=4e^{t/2}
f(t)=4e^{\frac{t}{2}}
tangent of f(x)=x^2-5,\at x=3
tangent\:f(x)=x^{2}-5,\at\:x=3
(\partial)/(\partial y)(2/(2x+3y))
\frac{\partial\:}{\partial\:y}(\frac{2}{2x+3y})
derivative of f(x)=x^2sin(x)
derivative\:f(x)=x^{2}\sin(x)
laplacetransform-3cos(t)
laplacetransform\:-3\cos(t)
integral of ((2x)/(x^2+y^4))
\int\:(\frac{2x}{x^{2}+y^{4}})dx
derivative of sqrt(x^3+x)
\frac{d}{dx}(\sqrt{x^{3}+x})
integral of 5cos^2(x)
\int\:5\cos^{2}(x)dx
derivative of-x^3+9x^2-6x+9
\frac{d}{dx}(-x^{3}+9x^{2}-6x+9)
derivative of 8/(sqrt(64+64t^2))
derivative\:\frac{8}{\sqrt{64+64t^{2}}}
(dy)/(dx)=2cos(x)(y+1),y(pi/6)=2
\frac{dy}{dx}=2\cos(x)(y+1),y(\frac{π}{6})=2
limit as x approaches 0+of (5x)^{3x}
\lim\:_{x\to\:0+}((5x)^{3x})
x^2y^'=2xy+y^2
x^{2}y^{\prime\:}=2xy+y^{2}
(\partial)/(\partial x)(2x^2y^2)
\frac{\partial\:}{\partial\:x}(2x^{2}y^{2})
sum from n=0 to infinity of 9(3/4)^n
\sum\:_{n=0}^{\infty\:}9(\frac{3}{4})^{n}
area y=x,0,4
area\:y=x,0,4
limit as x approaches infinity of 4x
\lim\:_{x\to\:\infty\:}(4x)
limit as x approaches 0 of ((e^x-e^{-x}-2sin(x)))/(3x^3)
\lim\:_{x\to\:0}(\frac{(e^{x}-e^{-x}-2\sin(x))}{3x^{3}})
sum from n=1 to infinity of 1/(sqrt(n))
\sum\:_{n=1}^{\infty\:}\frac{1}{\sqrt{n}}
taylor \sqrt[3]{x},1
taylor\:\sqrt[3]{x},1
integral of-2y
\int\:-2ydy
1
..
180
181
182
183
184
..
2459