Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
inverse of (7x)/(2x-3)
inverse\:\frac{7x}{2x-3}
domain of f(x)=sqrt(-4x+8)
domain\:f(x)=\sqrt{-4x+8}
periodicity of f(x)=-3sin(2x+pi/2)
periodicity\:f(x)=-3\sin(2x+\frac{π}{2})
intercepts of f(x)=-(x+1)^2+3
intercepts\:f(x)=-(x+1)^{2}+3
perpendicular y= 7/4 x-6
perpendicular\:y=\frac{7}{4}x-6
asymptotes of g(x)=(15x^2)/(3x^2+1)
asymptotes\:g(x)=\frac{15x^{2}}{3x^{2}+1}
critical f(x)=x^3-12x+5
critical\:f(x)=x^{3}-12x+5
domain of sqrt((-x^2+16)(x+2))
domain\:\sqrt{(-x^{2}+16)(x+2)}
inverse of f(x)=sqrt(6x-12)
inverse\:f(x)=\sqrt{6x-12}
periodicity of tan(2x-pi/3)
periodicity\:\tan(2x-\frac{π}{3})
inverse of y=2^{x+1}-5
inverse\:y=2^{x+1}-5
slope ofintercept 2y-x=14
slopeintercept\:2y-x=14
perpendicular x-9y-8=0,(1,-4)
perpendicular\:x-9y-8=0,(1,-4)
domain of f(x)=-1/(2sqrt(3-x))
domain\:f(x)=-\frac{1}{2\sqrt{3-x}}
intercepts of f(x)=(5x+25)/(2x+10)
intercepts\:f(x)=\frac{5x+25}{2x+10}
slope of 4x-y=3
slope\:4x-y=3
distance (2,9),(7,8)
distance\:(2,9),(7,8)
extreme y=x^4+2x^3-2x^2+1
extreme\:y=x^{4}+2x^{3}-2x^{2}+1
line m=16,(-1,-9/2)
line\:m=16,(-1,-\frac{9}{2})
domain of (x^2+9x+20)/(x+4)
domain\:\frac{x^{2}+9x+20}{x+4}
extreme y=x+(3600)/x
extreme\:y=x+\frac{3600}{x}
domain of (4/x)/(4/x+4)
domain\:\frac{\frac{4}{x}}{\frac{4}{x}+4}
intercepts of f(x)= 3/((x-1)(x^2-4))
intercepts\:f(x)=\frac{3}{(x-1)(x^{2}-4)}
domain of f(x)=((x^2+x+2))/(x-1)
domain\:f(x)=\frac{(x^{2}+x+2)}{x-1}
domain of 2/(3x+9)
domain\:\frac{2}{3x+9}
asymptotes of (x+2)/(x^2-x-2)
asymptotes\:\frac{x+2}{x^{2}-x-2}
critical 2(x-6)^{2/3}+6
critical\:2(x-6)^{\frac{2}{3}}+6
simplify (-1.6)(4)
simplify\:(-1.6)(4)
inverse of f(x)=8x-3
inverse\:f(x)=8x-3
perpendicular-2
perpendicular\:-2
inverse of f(x)=18+\sqrt[3]{x}
inverse\:f(x)=18+\sqrt[3]{x}
intercepts of x^2+4x-3
intercepts\:x^{2}+4x-3
inverse of 25
inverse\:25
intercepts of f(x)=e^{3x}(2-x)
intercepts\:f(x)=e^{3x}(2-x)
extreme f(x)=x^3-12x
extreme\:f(x)=x^{3}-12x
monotone f(x)= 1/3 x^3-3/2 x^2
monotone\:f(x)=\frac{1}{3}x^{3}-\frac{3}{2}x^{2}
inverse of f(x)=25
inverse\:f(x)=25
slope ofintercept x+y=15
slopeintercept\:x+y=15
parity x^3+x
parity\:x^{3}+x
asymptotes of (x^2+2)/(x-2)
asymptotes\:\frac{x^{2}+2}{x-2}
midpoint (4,-1),(6,4)
midpoint\:(4,-1),(6,4)
inverse of f(x)=-0.025x^2+0.35x
inverse\:f(x)=-0.025x^{2}+0.35x
y=5
y=5
asymptotes of f(x)=(sin(x))/(1+cos(x))
asymptotes\:f(x)=\frac{\sin(x)}{1+\cos(x)}
monotone xe^{-(x^2)/2}
monotone\:xe^{-\frac{x^{2}}{2}}
inverse of f(x)=(9+x)/3
inverse\:f(x)=\frac{9+x}{3}
extreme 3x^6-7x^5
extreme\:3x^{6}-7x^{5}
domain of (4x)/(9x-1)
domain\:\frac{4x}{9x-1}
intercepts of f(x)=(x^2-3x+2)/(x-4)
intercepts\:f(x)=\frac{x^{2}-3x+2}{x-4}
asymptotes of x-3\sqrt[3]{x}
asymptotes\:x-3\sqrt[3]{x}
slope of y= 2/9 x
slope\:y=\frac{2}{9}x
domain of f(x)=((4x+7))/(xsqrt(x+9))
domain\:f(x)=\frac{(4x+7)}{x\sqrt{x+9}}
inverse of f(x)=(x^7)/3+3
inverse\:f(x)=\frac{x^{7}}{3}+3
intercepts of f(x)=(x^2-4)/(3x^2)
intercepts\:f(x)=\frac{x^{2}-4}{3x^{2}}
range of f(x)=2x-10
range\:f(x)=2x-10
line (2/5 ,5),(2,-1)
line\:(\frac{2}{5},5),(2,-1)
inverse of f(x)=2.5+(5000)/x
inverse\:f(x)=2.5+\frac{5000}{x}
y=3x+1
y=3x+1
monotone 2x^2
monotone\:2x^{2}
asymptotes of (5+4x)/(x+3)
asymptotes\:\frac{5+4x}{x+3}
asymptotes of f(x)=-3/(x-1)-1
asymptotes\:f(x)=-\frac{3}{x-1}-1
asymptotes of f(x)=(x-2)/(x-1)
asymptotes\:f(x)=\frac{x-2}{x-1}
inverse of f(x)=(4x-2)/(x-4)
inverse\:f(x)=\frac{4x-2}{x-4}
asymptotes of (3x)/(x^2-1)
asymptotes\:\frac{3x}{x^{2}-1}
inverse of f(x)=sqrt(2x)+3
inverse\:f(x)=\sqrt{2x}+3
asymptotes of (x^4)/(x^2+5)
asymptotes\:\frac{x^{4}}{x^{2}+5}
extreme f(x)=x^{1/3}
extreme\:f(x)=x^{\frac{1}{3}}
inverse of f(x)=3x-5/4
inverse\:f(x)=3x-\frac{5}{4}
domain of arccos(x)
domain\:\arccos(x)
domain of f(x)= 1/(x^2-2)+sqrt(x^2-3)
domain\:f(x)=\frac{1}{x^{2}-2}+\sqrt{x^{2}-3}
inverse of f(x)=15.45(1.46^x)
inverse\:f(x)=15.45(1.46^{x})
simplify (3.1)(4.7)
simplify\:(3.1)(4.7)
inverse of f(x)=2^x+6
inverse\:f(x)=2^{x}+6
range of f(x)= 1/((1-x)^2)
range\:f(x)=\frac{1}{(1-x)^{2}}
inverse of f(x)=(x+1)/2
inverse\:f(x)=\frac{x+1}{2}
asymptotes of f(x)= 1/(x+9)
asymptotes\:f(x)=\frac{1}{x+9}
domain of 1+sqrt(x-1)
domain\:1+\sqrt{x-1}
asymptotes of f(x)=(6e^x)/(e^x-7)
asymptotes\:f(x)=\frac{6e^{x}}{e^{x}-7}
intercepts of f(x)=-(x+5)^2+6
intercepts\:f(x)=-(x+5)^{2}+6
asymptotes of 3^x-5
asymptotes\:3^{x}-5
critical e^{2x}-e^{-x}
critical\:e^{2x}-e^{-x}
domain of f(x)=-((x-4)/2)
domain\:f(x)=-(\frac{x-4}{2})
intercepts of f(x)=4x^2-8x+1
intercepts\:f(x)=4x^{2}-8x+1
inverse of y=2x^4-5
inverse\:y=2x^{4}-5
domain of f(x)=sqrt(|x^3-x|)
domain\:f(x)=\sqrt{\left|x^{3}-x\right|}
asymptotes of f(x)= 8/(x+2)
asymptotes\:f(x)=\frac{8}{x+2}
domain of sqrt(3-x)
domain\:\sqrt{3-x}
inverse of (x-1)^7
inverse\:(x-1)^{7}
slope of 2x-4y=20
slope\:2x-4y=20
inverse of-6+ln(x)
inverse\:-6+\ln(x)
domain of y=sqrt(x^2+3)
domain\:y=\sqrt{x^{2}+3}
range of-5cos(6x)
range\:-5\cos(6x)
line (0,0),(4.6729,16.617)
line\:(0,0),(4.6729,16.617)
critical f(x)=2x^3-12x^2-30x+9
critical\:f(x)=2x^{3}-12x^{2}-30x+9
critical-12x^2-18x
critical\:-12x^{2}-18x
parity f(x)=x^3+x^2
parity\:f(x)=x^{3}+x^{2}
inflection f(x)=(x^3)/(x^2-1)
inflection\:f(x)=\frac{x^{3}}{x^{2}-1}
domain of (3x)/(x^2-1)
domain\:\frac{3x}{x^{2}-1}
domain of f(x)=(1-3x)/(4+x)
domain\:f(x)=\frac{1-3x}{4+x}
inverse of f(x)=8^x+13
inverse\:f(x)=8^{x}+13
1
..
131
132
133
134
135
..
1324