Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
AI Chat
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Trigonometrie >

arctan(cos(pi))

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

arctan(cos(π))

Lösung

−4π​
+1
Dezimale
−45
Schritte zur Lösung
arctan(cos(π))
Verwende die folgende triviale Identität:cos(π)=(−1)
cos(π)
cos(x) Periodizitätstabelle mit 2πn Zyklus:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=arctan(−1)
=arctan(−1)
Umschreiben mit Hilfe von Trigonometrie-Identitäten:arctan(−1)=−4π​
arctan(−1)
Verwende die folgende Eigenschaft: arctan(−x)=−arctan(x)arctan(−1)=−arctan(1)=−arctan(1)
Verwende die folgende triviale Identität:arctan(1)=4π​
arctan(1)
x033​​13​​arctan(x)06π​4π​3π​​arctan(x)0∘30∘45∘60∘​​
=4π​
=−4π​
=−4π​

Beliebte Beispiele

tan((23pi)/(12))tan(1223π​)sin(57)sin(57∘)arccot(2)arccot(2)sin(405)sin(405∘)cos(27)cos(27∘)
LernwerkzeugeKI-Mathe-LöserAI ChatArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-Erweiterung
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenService TermsCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024