解答
積分計算機導関数計算機代数計算機行列計算機もっと...
グラフ作成
折れ線グラフ指数グラフ二次グラフ正弦グラフもっと...
計算機能
BMI計算機複利計算機パーセンテージ計算機加速度計算機もっと...
幾何学
ピタゴラス定理計算機円面積計算機二等辺三角形計算機三角形計算機もっと...
AI Chat
ツール
ノートグループチートシートワークシート練習検証する
ja
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
人気のある 三角関数 >

solvefor x,arctan(x^2+9y^2-2x-36y+37)=0

  • 前代数
  • 代数
  • 前微積分
  • 微分積分
  • 関数
  • 線形代数
  • 三角関数
  • 統計
  • 化学
  • 経済学
  • 換算

解

解く x,arctan(x2+9y2−2x−36y+37)=0

解

x=1+3−y2+4y−4​,x=1−3−y2+4y−4​
解答ステップ
arctan(x2+9y2−2x−36y+37)=0
三角関数の逆数プロパティを適用する
arctan(x2+9y2−2x−36y+37)=0
arctan(x)=a⇒x=tan(a)x2+9y2−2x−36y+37=tan(0)
tan(0)=0
tan(0)
次の自明恒等式を使用する:tan(0)=0
tan(0)
tan(x)πn 循環を含む周期性テーブル:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
=0
=0
x2+9y2−2x−36y+37=0
x2+9y2−2x−36y+37=0
解く x2+9y2−2x−36y+37=0:x=1+3−y2+4y−4​,x=1−3−y2+4y−4​
x2+9y2−2x−36y+37=0
標準的な形式で書く ax2+bx+c=0x2−2x+9y2−36y+37=0
解くとthe二次式
x2−2x+9y2−36y+37=0
二次Equationの公式:
次の場合: a=1,b=−2,c=9y2−36y+37x1,2​=2⋅1−(−2)±(−2)2−4⋅1⋅(9y2−36y+37)​​
x1,2​=2⋅1−(−2)±(−2)2−4⋅1⋅(9y2−36y+37)​​
簡素化 (−2)2−4⋅1⋅(9y2−36y+37)​:6−y2+4y−4​
(−2)2−4⋅1⋅(9y2−36y+37)​
指数の規則を適用する: n が偶数であれば (−a)n=an(−2)2=22=22−4⋅1⋅(9y2−36y+37)​
数を乗じる:4⋅1=4=22−4(9y2−36y+37)​
因数 22−4(9y2−36y+37):36(−y2+4y−4)
22−4(9y2−36y+37)
書き換え=4⋅1−4(37+y2⋅9−36y)
共通項をくくり出す 4=4(1−(37+y2⋅9−36y))
因数 −(9y2−36y+37)+1:9(−y2+4y−4)
1−(37+y2⋅9−36y)
=1−(37+9y2−36y)
−(37+y2⋅9−36y):−37−y2⋅9+36y
−(37+y2⋅9−36y)
括弧を分配する=−37−y2⋅9−(−36y)
マイナス・プラスの規則を適用する−(−a)=a,−(a)=−a=−37−y2⋅9+36y
=1−37−y2⋅9+36y
数を引く:1−37=−36=−9y2+36y−36
書き換え=−9y2+9⋅4y−9⋅4
共通項をくくり出す 9=9(−y2+4y−4)
=4⋅9(−y2+4y−4)
改良=36(−y2+4y−4)
=36(−y2+4y−4)​
累乗根の規則を適用する:nab​=na​nb​,, 以下を想定 a≥0,b≥0=36​−y2+4y−4​
36​=6
36​
数を因数に分解する:36=62=62​
累乗根の規則を適用する: nan​=a62​=6=6
=6−y2+4y−4​
因数 −y2+4y−4:−(y−2)2
−y2+4y−4
共通項をくくり出す −1=−(y2−4y+4)
因数 y2−4y+4:(y−2)(y−2)
y2−4y+4
式をグループに分ける
y2−4y+4
定義
以下の因数: 4:1,2,4
4
除数 (因数)
以下の素因数を求める: 4:2,2
4
424=2⋅2で割る =2⋅2
2 は素数なので, さらに因数分解はできない=2⋅2
素因数を加える: 2
1 および 4 の数自体を加える1,4
以下の因数: 41,2,4
以下の負の因数: 4:−1,−2,−4
因数に −1 を乗じて負の因数を得る−1,−2,−4
u∗v=4などの各 2 因数で以下をチェックする: u+v=−4
以下をチェックする: u=1,v=4:u∗v=4,u+v=5⇒偽以下をチェックする: u=2,v=2:u∗v=4,u+v=4⇒偽
u=−2,v=−2
以下に分ける: (ax2+ux)+(vx+c)y2−2y−2y+4
=y2−2y−2y+4
yを y2−2y:y(y−2) からくくり出す
y2−2y
指数の規則を適用する: ab+c=abacy2=yy=yy−2y
共通項をくくり出す y=y(y−2)
−2を −2y+4:−2(y−2) からくくり出す
−2y+4
4を書き換え 2⋅2=−2y+2⋅2
共通項をくくり出す −2=−2(y−2)
=y(y−2)−2(y−2)
共通項をくくり出す y−2=(y−2)(y−2)
=−(y−2)(y−2)
改良=−(y−2)2
=6−(y−2)2​
−(y−2)2​=−y2+4y−4​
−(y−2)2​
拡張 −(y−2)2:−y2+4y−4
−(y−2)2
(y−2)2:y2−4y+4
完全平方式を適用する: (a−b)2=a2−2ab+b2a=y,b=2
=y2−2y⋅2+22
簡素化 y2−2y⋅2+22:y2−4y+4
y2−2y⋅2+22
数を乗じる:2⋅2=4=y2−4y+22
22=4=y2−4y+4
=y2−4y+4
=−(y2−4y+4)
拡張 −(y2−4y+4):−y2+4y−4
括弧を分配する=−y2−(−4y)−4
マイナス・プラスの規則を適用する−(−a)=a,−(a)=−a=−y2+4y−4
=−y2+4y−4
=−y2+4y−4​
=6−y2+4y−4​
x1,2​=2⋅1−(−2)±6−y2+4y−4​​
解を分離するx1​=2⋅1−(−2)+6−y2+4y−4​​,x2​=2⋅1−(−2)−6−y2+4y−4​​
x=2⋅1−(−2)+6−y2+4y−4​​:1+3−y2+4y−4​
2⋅1−(−2)+6−y2+4y−4​​
規則を適用 −(−a)=a=2⋅12+6−y2+4y−4​​
数を乗じる:2⋅1=2=22+6−y2+4y−4​​
因数 2+6−y2+4y−4​:2(1+3−y2−4+4y​)
2+6−y2+4y−4​
書き換え=2⋅1+2⋅3−y2−4+4y​
共通項をくくり出す 2=2(1+3−y2−4+4y​)
=22(1+3−y2−4+4y​)​
数を割る:22​=1=1+3−y2+4y−4​
x=2⋅1−(−2)−6−y2+4y−4​​:1−3−y2+4y−4​
2⋅1−(−2)−6−y2+4y−4​​
規則を適用 −(−a)=a=2⋅12−6−y2+4y−4​​
数を乗じる:2⋅1=2=22−6−y2+4y−4​​
因数 2−6−y2+4y−4​:2(1−3−y2−4+4y​)
2−6−y2+4y−4​
書き換え=2⋅1−2⋅3−y2−4+4y​
共通項をくくり出す 2=2(1−3−y2−4+4y​)
=22(1−3−y2−4+4y​)​
数を割る:22​=1=1−3−y2+4y−4​
二次equationの解:x=1+3−y2+4y−4​,x=1−3−y2+4y−4​
x=1+3−y2+4y−4​,x=1−3−y2+4y−4​

グラフ

Sorry, your browser does not support this application
インタラクティブなグラフを表示

人気の例

sin(5x)=sin(x)sin(5x)=sin(x)arcsin(x)= 1/2arcsin(x)=21​4tan(x)=44tan(x)=4tan(x/2)+1=0tan(2x​)+1=07tan^3(x)-21tan(x)=07tan3(x)−21tan(x)=0
勉強ツールAI Math SolverAI Chatワークシート練習チートシート計算機能グラフ作成計算機ジオメトリーカルキュレーターソリューションの検証
アプリSymbolab アプリ (Android)グラフ作成計算機 (Android)練習 (Android)Symbolab アプリ (iOS)グラフ作成計算機 (iOS)練習 (iOS)Chrome拡張機能
会社Symbolabについてブログヘルプ
法務プライバシーService TermsCookieに関するポリシークッキー設定私の個人情報を販売または共有しないでください著作権, コミュニティガイドライン, DSA & その他の法務リソースLearneo法務センター
ソーシャルメディア
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024