解答
cot(u)−csc(u)=1+cos(u)sin(u)
解答
u∈R无解
求解步骤
cot(u)−csc(u)=1+cos(u)sin(u)
两边减去 1+cos(u)sin(u)cot(u)−csc(u)−1+cos(u)sin(u)=0
化简 cot(u)−csc(u)−1+cos(u)sin(u):1+cos(u)cot(u)(1+cos(u))−csc(u)(1+cos(u))−sin(u)
cot(u)−csc(u)−1+cos(u)sin(u)
将项转换为分式: cot(u)=1+cos(u)cot(u)(1+cos(u)),csc(u)=1+cos(u)csc(u)(1+cos(u))=1+cos(u)cot(u)(1+cos(u))−1+cos(u)csc(u)(1+cos(u))−1+cos(u)sin(u)
因为分母相等,所以合并分式: ca±cb=ca±b=1+cos(u)cot(u)(1+cos(u))−csc(u)(1+cos(u))−sin(u)
1+cos(u)cot(u)(1+cos(u))−csc(u)(1+cos(u))−sin(u)=0
g(x)f(x)=0⇒f(x)=0cot(u)(1+cos(u))−csc(u)(1+cos(u))−sin(u)=0
用 sin, cos 表示
−sin(u)+(1+cos(u))cot(u)−(1+cos(u))csc(u)
使用基本三角恒等式: cot(x)=sin(x)cos(x)=−sin(u)+(1+cos(u))sin(u)cos(u)−(1+cos(u))csc(u)
使用基本三角恒等式: csc(x)=sin(x)1=−sin(u)+(1+cos(u))sin(u)cos(u)−(1+cos(u))sin(u)1
化简 −sin(u)+(1+cos(u))sin(u)cos(u)−(1+cos(u))sin(u)1:sin(u)−sin2(u)+cos2(u)−1
−sin(u)+(1+cos(u))sin(u)cos(u)−(1+cos(u))sin(u)1
(1+cos(u))sin(u)cos(u)=sin(u)cos(u)(1+cos(u))
(1+cos(u))sin(u)cos(u)
分式相乘: a⋅cb=ca⋅b=sin(u)cos(u)(1+cos(u))
(1+cos(u))sin(u)1=sin(u)1+cos(u)
(1+cos(u))sin(u)1
分式相乘: a⋅cb=ca⋅b=sin(u)1⋅(1+cos(u))
1⋅(1+cos(u))=1+cos(u)
1⋅(1+cos(u))
乘以:1⋅(1+cos(u))=(1+cos(u))=(1+cos(u))
去除括号: (a)=a=1+cos(u)
=sin(u)1+cos(u)
=−sin(u)+sin(u)cos(u)(cos(u)+1)−sin(u)cos(u)+1
合并分式 sin(u)cos(u)(cos(u)+1)−sin(u)cos(u)+1:sin(u)cos(u)(1+cos(u))−(1+cos(u))
使用法则 ca±cb=ca±b=sin(u)cos(u)(cos(u)+1)−(cos(u)+1)
=−sin(u)+sin(u)cos(u)(cos(u)+1)−(cos(u)+1)
乘开 cos(u)(1+cos(u))−(1+cos(u)):cos2(u)−1
cos(u)(1+cos(u))−(1+cos(u))
乘开 cos(u)(1+cos(u)):cos(u)+cos2(u)
cos(u)(1+cos(u))
使用分配律: a(b+c)=ab+aca=cos(u),b=1,c=cos(u)=cos(u)⋅1+cos(u)cos(u)
=1⋅cos(u)+cos(u)cos(u)
化简 1⋅cos(u)+cos(u)cos(u):cos(u)+cos2(u)
1⋅cos(u)+cos(u)cos(u)
1⋅cos(u)=cos(u)
1⋅cos(u)
乘以:1⋅cos(u)=cos(u)=cos(u)
cos(u)cos(u)=cos2(u)
cos(u)cos(u)
使用指数法则: ab⋅ac=ab+ccos(u)cos(u)=cos1+1(u)=cos1+1(u)
数字相加:1+1=2=cos2(u)
=cos(u)+cos2(u)
=cos(u)+cos2(u)
=cos(u)+cos2(u)−(1+cos(u))
−(1+cos(u)):−1−cos(u)
−(1+cos(u))
打开括号=−(1)−(cos(u))
使用加减运算法则+(−a)=−a=−1−cos(u)
=cos(u)+cos2(u)−1−cos(u)
化简 cos(u)+cos2(u)−1−cos(u):cos2(u)−1
cos(u)+cos2(u)−1−cos(u)
对同类项分组=cos(u)+cos2(u)−cos(u)−1
同类项相加:cos(u)−cos(u)=0=cos2(u)−1
=cos2(u)−1
=−sin(u)+sin(u)cos2(u)−1
将项转换为分式: sin(u)=sin(u)sin(u)sin(u)=−sin(u)sin(u)sin(u)+sin(u)cos2(u)−1
因为分母相等,所以合并分式: ca±cb=ca±b=sin(u)−sin(u)sin(u)+cos2(u)−1
−sin(u)sin(u)+cos2(u)−1=−sin2(u)+cos2(u)−1
−sin(u)sin(u)+cos2(u)−1
sin(u)sin(u)=sin2(u)
sin(u)sin(u)
使用指数法则: ab⋅ac=ab+csin(u)sin(u)=sin1+1(u)=sin1+1(u)
数字相加:1+1=2=sin2(u)
=−sin2(u)+cos2(u)−1
=sin(u)−sin2(u)+cos2(u)−1
=sin(u)−sin2(u)+cos2(u)−1
sin(u)−1+cos2(u)−sin2(u)=0
g(x)f(x)=0⇒f(x)=0−1+cos2(u)−sin2(u)=0
使用三角恒等式改写
−1+cos2(u)−sin2(u)
使用倍角公式: cos2(x)−sin2(x)=cos(2x)=−1+cos(2u)
−1+cos(2u)=0
将 1到右边
−1+cos(2u)=0
两边加上 1−1+cos(2u)+1=0+1
化简cos(2u)=1
cos(2u)=1
cos(2u)=1的通解
cos(x) 周期表(周期为 2πn):
x06π4π3π2π32π43π65πcos(x)12322210−21−22−23xπ67π45π34π23π35π47π611πcos(x)−1−23−22−210212223
2u=0+2πn
2u=0+2πn
解 2u=0+2πn:u=πn
2u=0+2πn
0+2πn=2πn2u=2πn
两边除以 2
2u=2πn
两边除以 222u=22πn
化简u=πn
u=πn
u=πn
因为方程对以下值无定义:πnu∈R无解