解答
2sin(36∘)cos(36∘)
解答
82(1+5)5−5
+1
十进制
0.95105…求解步骤
2sin(36∘)cos(36∘)
使用三角恒等式改写:sin(36∘)=425−5
sin(36∘)
显示:cos(36∘)−sin(18∘)=21
使用以下积化和差公式: 2sin(x)cos(y)=sin(x+y)−sin(x−y)2cos(36∘)sin(18∘)=sin(54∘)−sin(18∘)
显示:2cos(36∘)sin(18∘)=21
使用倍角公式: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
两边除以 sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
利用以下特性: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
两边除以 cos(18∘)1=4sin(18∘)cos(36∘)
两边除以 221=2sin(18∘)cos(36∘)
代入 21=2sin(18∘)cos(36∘)21=sin(54∘)−sin(18∘)
sin(54∘)=cos(90∘−54∘)21=cos(90∘−54∘)−sin(18∘)
21=cos(36∘)−sin(18∘)
显示:cos(36∘)+sin(18∘)=45
使用因式分解法则:a2−b2=(a+b)(a−b)a=cos(36∘)+sin(18∘)(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))((cos(36∘)+sin(18∘))−(cos(36∘)−sin(18∘)))
整理后得(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=2(2cos(36∘)sin(18∘))
显示:2cos(36∘)sin(18∘)=21
使用倍角公式: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
两边除以 sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
利用以下特性: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
两边除以 cos(18∘)1=4sin(18∘)cos(36∘)
两边除以 221=2sin(18∘)cos(36∘)
代入 2cos(36∘)sin(18∘)=21(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=1
代入 cos(36∘)−sin(18∘)=21(cos(36∘)+sin(18∘))2−(21)2=1
整理后得(cos(36∘)+sin(18∘))2−41=1
两边加上 41(cos(36∘)+sin(18∘))2−41+41=1+41
整理后得(cos(36∘)+sin(18∘))2=45
在两侧开平方cos(36∘)+sin(18∘)=±45
cos(36∘)不能为负sin(18∘)不能为负cos(36∘)+sin(18∘)=45
以下方程式相加cos(36∘)+sin(18∘)=25((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))=(25+21)
整理后得cos(36∘)=45+1
两边进行平方(cos(36∘))2=(45+1)2
利用以下特性: sin2(x)=1−cos2(x)sin2(36∘)=1−cos2(36∘)
代入 cos(36∘)=45+1sin2(36∘)=1−(45+1)2
整理后得sin2(36∘)=85−5
在两侧开平方sin(36∘)=±85−5
sin(36∘)不能为负sin(36∘)=85−5
整理后得sin(36∘)=225−5
=225−5
化简=425−5
使用三角恒等式改写:cos(36∘)=45+1
cos(36∘)
显示:cos(36∘)−sin(18∘)=21
使用以下积化和差公式: 2sin(x)cos(y)=sin(x+y)−sin(x−y)2cos(36∘)sin(18∘)=sin(54∘)−sin(18∘)
显示:2cos(36∘)sin(18∘)=21
使用倍角公式: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
两边除以 sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
利用以下特性: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
两边除以 cos(18∘)1=4sin(18∘)cos(36∘)
两边除以 221=2sin(18∘)cos(36∘)
代入 21=2sin(18∘)cos(36∘)21=sin(54∘)−sin(18∘)
sin(54∘)=cos(90∘−54∘)21=cos(90∘−54∘)−sin(18∘)
21=cos(36∘)−sin(18∘)
显示:cos(36∘)+sin(18∘)=45
使用因式分解法则:a2−b2=(a+b)(a−b)a=cos(36∘)+sin(18∘)(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))((cos(36∘)+sin(18∘))−(cos(36∘)−sin(18∘)))
整理后得(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=2(2cos(36∘)sin(18∘))
显示:2cos(36∘)sin(18∘)=21
使用倍角公式: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
两边除以 sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
利用以下特性: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
两边除以 cos(18∘)1=4sin(18∘)cos(36∘)
两边除以 221=2sin(18∘)cos(36∘)
代入 2cos(36∘)sin(18∘)=21(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=1
代入 cos(36∘)−sin(18∘)=21(cos(36∘)+sin(18∘))2−(21)2=1
整理后得(cos(36∘)+sin(18∘))2−41=1
两边加上 41(cos(36∘)+sin(18∘))2−41+41=1+41
整理后得(cos(36∘)+sin(18∘))2=45
在两侧开平方cos(36∘)+sin(18∘)=±45
cos(36∘)不能为负sin(18∘)不能为负cos(36∘)+sin(18∘)=45
以下方程式相加cos(36∘)+sin(18∘)=25((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))=(25+21)
整理后得cos(36∘)=45+1
=45+1
=2⋅425−5⋅45+1
化简 2⋅425−5⋅45+1:82(1+5)5−5
2⋅425−5⋅45+1
分式相乘: a⋅cb⋅ed=c⋅ea⋅b⋅d=4⋅425−5(5+1)⋅2
数字相乘:4⋅4=16=1622(1+5)5−5
约分:2=82(1+5)5−5
=82(1+5)5−5