解
cos(5π)cos(52π)cos(54π)cos(58π)
解
2cos(5π)cos(52π)cos(54π)+cos(5π)cos2(52π)
+1
十進法表記
−0.0625解答ステップ
cos(5π)cos(52π)cos(54π)cos(58π)
三角関数の公式を使用して書き換える:2cos(5π)cos(52π)(cos(54π)+cos(52π))
cos(5π)cos(52π)cos(54π)cos(58π)
積・和の公式を使用する: cos(s)cos(t)=21(cos(s−t)+cos(s+t))=cos(5π)cos(52π)21(cos(54π−58π)+cos(54π+58π))
簡素化:54π−58π=−54π
54π−58π
規則を適用 ca±cb=ca±b=54π−8π
類似した元を足す:4π−8π=−4π=5−4π
分数の規則を適用する: b−a=−ba=−54π
簡素化:54π+58π=512π
54π+58π
規則を適用 ca±cb=ca±b=54π+8π
類似した元を足す:4π+8π=12π=512π
cos(5π)cos(52π)21(cos(−54π)+cos(512π))=2cos(5π)cos(52π)(cos(−54π)+cos(512π))
cos(5π)cos(52π)21(cos(−54π)+cos(512π))
分数を乗じる: a⋅cb=ca⋅b=21⋅cos(5π)cos(52π)(cos(−54π)+cos(512π))
乗算:1⋅cos(5π)=cos(5π)=2cos(5π)cos(52π)(cos(−54π)+cos(512π))
=2cos(5π)cos(52π)(cos(−54π)+cos(512π))
次のプロパティを使用する:cos(−x)=cos(x)cos(−54π)=cos(54π)=2cos(5π)cos(52π)(cos(54π)+cos(512π))
cos(512π)=cos(52π)
cos(512π)
512πを書き換え 2π+52π=cos(2π+52π)
以下の周期性を適用する:cos: cos(x+2π)=cos(x)cos(2π+52π)=cos(52π)=cos(52π)
=2cos(5π)cos(52π)(cos(54π)+cos(52π))
=2cos(5π)cos(52π)(cos(54π)+cos(52π))
2cos(5π)cos(52π)(cos(54π)+cos(52π))=2cos(5π)cos(52π)cos(54π)+cos(5π)cos2(52π)
2cos(5π)cos(52π)(cos(54π)+cos(52π))
拡張 cos(5π)cos(52π)(cos(54π)+cos(52π)):cos(5π)cos(52π)cos(54π)+cos(5π)cos2(52π)
cos(5π)cos(52π)(cos(54π)+cos(52π))
分配法則を適用する: a(b+c)=ab+aca=cos(5π)cos(52π),b=cos(54π),c=cos(52π)=cos(5π)cos(52π)cos(54π)+cos(5π)cos(52π)cos(52π)
cos(5π)cos(52π)cos(52π)=cos(5π)cos2(52π)
cos(5π)cos(52π)cos(52π)
指数の規則を適用する: ab⋅ac=ab+ccos(52π)cos(52π)=cos1+1(52π)=cos(5π)cos1+1(52π)
数を足す:1+1=2=cos(5π)cos2(52π)
=cos(5π)cos(52π)cos(54π)+cos(5π)cos2(52π)
=2cos(5π)cos(52π)cos(54π)+cos(5π)cos2(52π)
=2cos(5π)cos(52π)cos(54π)+cos(5π)cos2(52π)