Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
AI Chat
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Trigonometrie >

arcsin(tan(-pi/4))

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

arcsin(tan(−4π​))

Lösung

−2π​
+1
Dezimale
−90
Schritte zur Lösung
arcsin(tan(−4π​))
Verwende die folgende Eigenschaft: tan(−x)=−tan(x)tan(−4π​)=−tan(4π​)=arcsin(−tan(4π​))
Verwende die folgende Eigenschaft: arcsin(−x)=−arcsin(x)arcsin(−tan(4π​))=−arcsin(tan(4π​))=−arcsin(tan(4π​))
Umschreiben mit Hilfe von Trigonometrie-Identitäten:arcsin(tan(4π​))=2π​
arcsin(tan(4π​))
Verwende die folgende triviale Identität:tan(4π​)=1
tan(4π​)
tan(x) Periodizitätstabelle mit πn Zyklus:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
=arcsin(1)
=arcsin(1)
Verwende die folgende triviale Identität:arcsin(1)=2π​
arcsin(1)
x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​
=2π​
=2π​
=−2π​

Beliebte Beispiele

arcsin((-2)/3)arcsin(3−2​)2cos^2((7pi)/(12))-12cos2(127π​)−1arctan(1/(1.5))arctan(1.51​)sin^2(300)sin2(300∘)arctan((-4)/(-2))arctan(−2−4​)
LernwerkzeugeKI-Mathe-LöserAI ChatArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-Erweiterung
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenService TermsCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024