解答
積分計算機導関数計算機代数計算機行列計算機もっと...
グラフ作成
折れ線グラフ指数グラフ二次グラフ正弦グラフもっと...
計算機能
BMI計算機複利計算機パーセンテージ計算機加速度計算機もっと...
幾何学
ピタゴラス定理計算機円面積計算機二等辺三角形計算機三角形計算機もっと...
AI Chat
ツール
ノートグループチートシートワークシート練習検証する
ja
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
人気のある 三角関数 >

4sin^3(x)-8sin^2(x)+sin(x)+3=0

  • 前代数
  • 代数
  • 前微積分
  • 微分積分
  • 関数
  • 線形代数
  • 三角関数
  • 統計
  • 化学
  • 経済学
  • 換算

解

4sin3(x)−8sin2(x)+sin(x)+3=0

解

x=2π​+2πn,x=67π​+2πn,x=611π​+2πn
+1
度
x=90∘+360∘n,x=210∘+360∘n,x=330∘+360∘n
解答ステップ
4sin3(x)−8sin2(x)+sin(x)+3=0
置換で解く
4sin3(x)−8sin2(x)+sin(x)+3=0
仮定:sin(x)=u4u3−8u2+u+3=0
4u3−8u2+u+3=0:u=1,u=−21​,u=23​
4u3−8u2+u+3=0
因数 4u3−8u2+u+3:(u−1)(2u+1)(2u−3)
4u3−8u2+u+3
有理根定理を使用する
a0​=3,an​=4
a0​:1,3の除数, an​:1,2,4の除数
ゆえに次の有理数をチェックする:±1,2,41,3​
11​ は式の累乗根なので u−1 をくくり出す
=(u−1)u−14u3−8u2+u+3​
u−14u3−8u2+u+3​=4u2−4u−3
u−14u3−8u2+u+3​
割る u−14u3−8u2+u+3​:u−14u3−8u2+u+3​=4u2+u−1−4u2+u+3​
分子 4u3−8u2+u+3
と除数 u−1の主係数で割る: u4u3​=4u2
商=4u2
u−1に4u2を乗じる:4u3−4u24u3−4u2を4u3−8u2+u+3から引いて新しい余りを得る余り=−4u2+u+3
このためu−14u3−8u2+u+3​=4u2+u−1−4u2+u+3​
=4u2+u−1−4u2+u+3​
割る u−1−4u2+u+3​:u−1−4u2+u+3​=−4u+u−1−3u+3​
分子 −4u2+u+3
と除数 u−1の主係数で割る: u−4u2​=−4u
商=−4u
u−1に−4uを乗じる:−4u2+4u−4u2+4uを−4u2+u+3から引いて新しい余りを得る余り=−3u+3
このためu−1−4u2+u+3​=−4u+u−1−3u+3​
=4u2−4u+u−1−3u+3​
割る u−1−3u+3​:u−1−3u+3​=−3
分子 −3u+3
と除数 u−1の主係数で割る: u−3u​=−3
商=−3
u−1に−3を乗じる:−3u+3−3u+3を−3u+3から引いて新しい余りを得る余り=0
このためu−1−3u+3​=−3
=4u2−4u−3
=4u2−4u−3
因数 4u2−4u−3:(2u+1)(2u−3)
4u2−4u−3
式をグループに分ける
4u2−4u−3
定義
以下の因数: 12:1,2,3,4,6,12
12
除数 (因数)
以下の素因数を求める: 12:2,2,3
12
12212=6⋅2で割る =2⋅6
626=3⋅2で割る =2⋅2⋅3
2,3 はすべて素数である。ゆえにさらに因数分解することはできない=2⋅2⋅3
以下の素因数を乗じる: 12:4,6
2⋅2=42⋅3=6
4,6
4,6
素因数を加える: 2,3
1 および 12 の数自体を加える1,12
以下の因数: 121,2,3,4,6,12
以下の負の因数: 12:−1,−2,−3,−4,−6,−12
因数に −1 を乗じて負の因数を得る−1,−2,−3,−4,−6,−12
u∗v=−12などの各 2 因数で以下をチェックする: u+v=−4
以下をチェックする: u=1,v=−12:u∗v=−12,u+v=−11⇒偽以下をチェックする: u=2,v=−6:u∗v=−12,u+v=−4⇒真
u=2,v=−6
以下に分ける: (ax2+ux)+(vx+c)(4u2+2u)+(−6u−3)
=(4u2+2u)+(−6u−3)
2uを 4u2+2u:2u(2u+1) からくくり出す
4u2+2u
指数の規則を適用する: ab+c=abacu2=uu=4uu+2u
4を書き換え 2⋅2=2⋅2uu+2u
共通項をくくり出す 2u=2u(2u+1)
−3を −6u−3:−3(2u+1) からくくり出す
−6u−3
6を書き換え 3⋅2=−3⋅2u−3
共通項をくくり出す −3=−3(2u+1)
=2u(2u+1)−3(2u+1)
共通項をくくり出す 2u+1=(2u+1)(2u−3)
=(u−1)(2u+1)(2u−3)
(u−1)(2u+1)(2u−3)=0
零因子の原則を使用:ab=0ならば a=0または b=0u−1=0or2u+1=0or2u−3=0
解く u−1=0:u=1
u−1=0
1を右側に移動します
u−1=0
両辺に1を足すu−1+1=0+1
簡素化u=1
u=1
解く 2u+1=0:u=−21​
2u+1=0
1を右側に移動します
2u+1=0
両辺から1を引く2u+1−1=0−1
簡素化2u=−1
2u=−1
以下で両辺を割る2
2u=−1
以下で両辺を割る222u​=2−1​
簡素化u=−21​
u=−21​
解く 2u−3=0:u=23​
2u−3=0
3を右側に移動します
2u−3=0
両辺に3を足す2u−3+3=0+3
簡素化2u=3
2u=3
以下で両辺を割る2
2u=3
以下で両辺を割る222u​=23​
簡素化u=23​
u=23​
解答はu=1,u=−21​,u=23​
代用を戻す u=sin(x)sin(x)=1,sin(x)=−21​,sin(x)=23​
sin(x)=1,sin(x)=−21​,sin(x)=23​
sin(x)=1:x=2π​+2πn
sin(x)=1
以下の一般解 sin(x)=1
sin(x)2πn 循環を含む周期性テーブル:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=2π​+2πn
x=2π​+2πn
sin(x)=−21​:x=67π​+2πn,x=611π​+2πn
sin(x)=−21​
以下の一般解 sin(x)=−21​
sin(x)2πn 循環を含む周期性テーブル:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=67π​+2πn,x=611π​+2πn
x=67π​+2πn,x=611π​+2πn
sin(x)=23​:解なし
sin(x)=23​
−1≤sin(x)≤1解なし
すべての解を組み合わせるx=2π​+2πn,x=67π​+2πn,x=611π​+2πn

グラフ

Sorry, your browser does not support this application
インタラクティブなグラフを表示

人気の例

sin(x)=0.71sin(x)=0.71sin(2x)+2sin(x)-cos(x)-1=0sin(2x)+2sin(x)−cos(x)−1=0cos(2x)=-0.4,-180<= x<= 180cos(2x)=−0.4,−180∘≤x≤180∘cos(x)=(-4)/(8/3 sqrt(3))cos(x)=38​3​−4​-2tan(x)+6=8−2tan(x)+6=8
勉強ツールAI Math SolverAI Chatワークシート練習チートシート計算機能グラフ作成計算機ジオメトリーカルキュレーターソリューションの検証
アプリSymbolab アプリ (Android)グラフ作成計算機 (Android)練習 (Android)Symbolab アプリ (iOS)グラフ作成計算機 (iOS)練習 (iOS)Chrome拡張機能
会社Symbolabについてブログヘルプ
法務プライバシーService TermsCookieに関するポリシークッキー設定私の個人情報を販売または共有しないでください著作権, コミュニティガイドライン, DSA & その他の法務リソースLearneo法務センター
ソーシャルメディア
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024