Solution
prove
Solution
Solution steps
Manipulating left side
Rewrite using trig identities
Use the Angle Difference identity:
Simplify
Simplify
Use the following trivial identity:
periodicity table with cycle:
Multiply:
Simplify
Use the following trivial identity:
periodicity table with cycle:
Apply rule
Rewrite using trig identities
Express with sin, cos
Use the basic trigonometric identity:
Simplify
Multiply fractions:
Multiply:
Use the basic trigonometric identity:
We showed that the two sides could take the same form
Popular Examples
prove tan^2(x)+tan(x)cot(x)=sec^2(x)prove prove cos(4θ)=2(cos(2θ))^2-1prove prove tan(2x)=(2sin(x)cos(x))/(2cos^2(x)-1)prove prove tan(x/2)=-cot(x)+csc(x)prove prove 1/(csc^2(x))+1/(sec^2(x))=1prove
Frequently Asked Questions (FAQ)
Is csc(x)sin(pi/2-x)=cot(x) ?
The answer to whether csc(x)sin(pi/2-x)=cot(x) is True