Solution
Solution
+2
Interval Notation
Decimal
Solution steps
Multiply both sides by
Multiply both sides by -1 (reverse the inequality)
Simplify
Divide both sides by
Divide both sides by
Simplify
For , if then
If then
Switch sides
Simplify
Use the following trivial identity:
Move to the right side
Subtract from both sides
Simplify
Simplify
Add similar elements:
Simplify
Group like terms
Least Common Multiplier of
Least Common Multiplier (LCM)
Prime factorization of
divides by
are all prime numbers, therefore no further factorization is possible
Prime factorization of
is a prime number, therefore no factorization is possible
Multiply each factor the greatest number of times it occurs in either or
Multiply the numbers:
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM
For multiply the denominator and numerator by
Since the denominators are equal, combine the fractions:
Add similar elements:
Cancel the common factor:
Simplify
Use the following trivial identity:
Move to the right side
Subtract from both sides
Simplify
Simplify
Add similar elements:
Simplify
Group like terms
Least Common Multiplier of
Least Common Multiplier (LCM)
Prime factorization of
divides by
are all prime numbers, therefore no further factorization is possible
Prime factorization of
is a prime number, therefore no factorization is possible
Multiply each factor the greatest number of times it occurs in either or
Multiply the numbers:
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM
For multiply the denominator and numerator by
Since the denominators are equal, combine the fractions:
Add similar elements:
Apply the fraction rule:
Simplify
Convert element to fraction:
Since the denominators are equal, combine the fractions:
Multiply the numbers:
Add similar elements:
Combine the intervals
Merge Overlapping Intervals