Soluzione
Soluzione
+1
Gradi
Fasi della soluzione
Riscrivere utilizzando identità trigonometriche
Usa l'identità iperbolica:
Applica la moltiplicazione incrociata: se allora
Semplificare
Applica le regole dell'esponente
Applica la regola degli esponenti:
Riscrivi l'equazione con
Risolvi
Affinare
Semplificare
Applica la legge commutativa:
Espandere
Applicare la legge della distribuzione:
Moltiplica le frazioni:
Moltiplica i numeri:
Moltiplica entrambi i lati per
Moltiplica entrambi i lati per
Semplificare
Semplificare
Applica la regola degli esponenti:
Aggiungi i numeri:
Semplificare
Moltiplica le frazioni:
Cancella il fattore comune:
Risolvi
Spostare a sinistra dell'equazione
Sottrarre da entrambi i lati
Semplificare
Scrivi in forma standard
Risolvi con la formula quadratica
Formula dell'equazione quadratica:
Per
Applicare la regola
Applica la regola degli esponenti: se è pari
Moltiplica i numeri:
Aggiungi i numeri:
Fattorizzare il numero:
Applicare la regola della radice:
Separare le soluzioni
Applicare la regola
Aggiungi i numeri:
Moltiplica i numeri:
Cancella il fattore comune:
Applicare la regola
Sottrai i numeri:
Moltiplica i numeri:
Applica la regola delle frazioni:
Cancella il fattore comune:
Le soluzioni dell'equazione quadratica sono:
Verificare le soluzioni
Trova i punti non-definiti (singolarità):
Prendere il denominatore (i) dell' e confrontare con zero
I seguenti punti sono non definiti
Combinare punti non definiti con soluzioni:
Sostituisci risolvi per
Risolvi
Applica le regole dell'esponente
Se , allora
Applica la regola del logaritmo:
Risolvi Nessuna soluzione per
a^{f(x)} non può essere zero o negativo per x\in\mathbb{R}