الحلّ
1−cos(x)=2sin2(x)1
الحلّ
x=1.01879…+2πn,x=2π−1.01879…+2πn,x=2.48401…+2πn,x=−2.48401…+2πn
+1
درجات
x=58.37265…∘+360∘n,x=301.62734…∘+360∘n,x=142.32379…∘+360∘n,x=−142.32379…∘+360∘nخطوات الحلّ
1−cos(x)=2sin2(x)1
من الطرفين 2sin2(x)1اطرح1−cos(x)−2sin2(x)1=0
1−cos(x)−2sin2(x)1بسّط:2sin2(x)2sin2(x)1−cos(x)−1
1−cos(x)−2sin2(x)1
−cos(x)+1=2sin2(x)1−cos(x)⋅2sin2(x) :حوّل الأعداد لكسور=2sin2(x)1−cos(x)⋅2sin2(x)−2sin2(x)1
ca±cb=ca±b :بما أنّ المقامات متساوية، اجمع البسوط=2sin2(x)1−cos(x)⋅2sin2(x)−1
2sin2(x)2sin2(x)1−cos(x)−1=0
g(x)f(x)=0⇒f(x)=02sin2(x)1−cos(x)−1=0
Rewrite using trig identities
−1+2sin2(x)1−cos(x)
cos2(x)+sin2(x)=1 :فعّل نطريّة فيتاغوروسsin2(x)=1−cos2(x)=−1+2(1−cos2(x))1−cos(x)
−1+(1−cos2(x))⋅21−cos(x)=0
بالاستعانة بطريقة التعويض
−1+(1−cos2(x))⋅21−cos(x)=0
cos(x)=u:على افتراض أنّ−1+(1−u2)⋅21−u=0
−1+(1−u2)⋅21−u=0:u≈0.52439…,u≈−0.79147…
−1+(1−u2)⋅21−u=0
−1+(1−u2)⋅21−uوسّع:−1+21−u−21−uu2
−1+(1−u2)⋅21−u
=−1+21−u(1−u2)
21−u(1−u2)وسٌع:21−u−21−uu2
21−u(1−u2)
a(b−c)=ab−ac : افتح أقواس بالاستعانة بـa=21−u,b=1,c=u2=21−u⋅1−21−uu2
=2⋅1⋅1−u−21−uu2
2⋅1=2:اضرب الأعداد=21−u−21−uu2
=−1+21−u−21−uu2
−1+21−u−21−uu2=0
انقل 1إلى الجانب الأيمن
−1+21−u−21−uu2=0
للطرفين 1أضف−1+21−u−21−uu2+1=0+1
بسّط21−u−21−uu2=1
21−u−21−uu2=1
21−u−21−uu2حلل إلى عوامل:21−u(1−u2)
21−u−21−uu2
أعد الكتابة كـ=1⋅21−u−21−uu2
21−uقم باخراج العامل المشترك=21−u(1−u2)
21−u(1−u2)=1
ربّع الطرفين:4−4u−8u2+8u3+4u4−4u5=1
21−u(1−u2)=1
(21−u(1−u2))2=12
(21−u(1−u2))2وسّع:4−4u−8u2+8u3+4u4−4u5
(21−u(1−u2))2
(a⋅b)n=anbn :فعّل قانون القوى=22(1−u)2(−u2+1)2
(1−u)2:1−u
a=a21 :فعْل قانون الجذور=((1−u)21)2
(ab)c=abc :فعّل قانون القوى=(1−u)21⋅2
21⋅2=1
21⋅2
a⋅cb=ca⋅b :اضرب كسور=21⋅2
2:إلغ العوامل المشتركة=1
=1−u
=22(1−u)(1−u2)2
(1−u2)2=1−2u2+u4
(1−u2)2
(a−b)2=a2−2ab+b2 :فعّل صيغة الضرب المختصرa=1,b=u2
=12−2⋅1⋅u2+(u2)2
12−2⋅1⋅u2+(u2)2بسّط:1−2u2+u4
12−2⋅1⋅u2+(u2)2
1a=1فعّل القانون12=1=1−2⋅1⋅u2+(u2)2
2⋅1⋅u2=2u2
2⋅1⋅u2
2⋅1=2:اضرب الأعداد=2u2
(u2)2=u4
(u2)2
(ab)c=abc :فعّل قانون القوى=u2⋅2
2⋅2=4:اضرب الأعداد=u4
=1−2u2+u4
=1−2u2+u4
=22(1−u)(u4−2u2+1)
22=4=4(1−u)(u4−2u2+1)
فعّل قانون ضرب الأقواس=4(1−u)⋅1+4(1−u)(−2u2)+4(1−u)u4
فعّل قوانين سالب-موجب+(−a)=−a=4⋅1⋅(1−u)−4⋅2(1−u)u2+4(1−u)u4
4⋅1⋅1−u−4⋅21−uu2+41−uu4بسّط:41−u−81−uu2+41−uu4
4⋅1⋅(1−u)−4⋅2(1−u)u2+4(1−u)u4
4⋅1=4:اضرب الأعداد=4(1−u)−4⋅2(1−u)u2+4(1−u)u4
4⋅2=8:اضرب الأعداد=4(1−u)−8(1−u)u2+4(1−u)u4
=4(1−u)−8(1−u)u2+4(1−u)u4
4(1−u)−8(1−u)u2+4(1−u)u4وسّع:4−4u−8u2+8u3+4u4−4u5
4(1−u)−8(1−u)u2+4(1−u)u4
=4(1−u)−8u2(1−u)+4u4(1−u)
4(1−u)وسٌع:4−4u
4(1−u)
a(b−c)=ab−ac : افتح أقواس بالاستعانة بـa=4,b=1,c=u=4⋅1−4u
4⋅1=4:اضرب الأعداد=4−4u
=4−4u−8(1−u)u2+4(1−u)u4
−8u2(1−u)وسٌع:−8u2+8u3
−8u2(1−u)
a(b−c)=ab−ac : افتح أقواس بالاستعانة بـa=−8u2,b=1,c=u=−8u2⋅1−(−8u2)u
فعّل قوانين سالب-موجب−(−a)=a=−8⋅1⋅u2+8u2u
−8⋅1⋅u2+8u2uبسّط:−8u2+8u3
−8⋅1⋅u2+8u2u
8⋅1⋅u2=8u2
8⋅1⋅u2
8⋅1=8:اضرب الأعداد=8u2
8u2u=8u3
8u2u
ab⋅ac=ab+c :فعّل قانون القوىu2u=u2+1=8u2+1
2+1=3:اجمع الأعداد=8u3
=−8u2+8u3
=−8u2+8u3
=4−4u−8u2+8u3+4(1−u)u4
4u4(1−u)وسٌع:4u4−4u5
4u4(1−u)
a(b−c)=ab−ac : افتح أقواس بالاستعانة بـa=4u4,b=1,c=u=4u4⋅1−4u4u
=4⋅1⋅u4−4u4u
4⋅1⋅u4−4u4uبسّط:4u4−4u5
4⋅1⋅u4−4u4u
4⋅1⋅u4=4u4
4⋅1⋅u4
4⋅1=4:اضرب الأعداد=4u4
4u4u=4u5
4u4u
ab⋅ac=ab+c :فعّل قانون القوىu4u=u4+1=4u4+1
4+1=5:اجمع الأعداد=4u5
=4u4−4u5
=4u4−4u5
=4−4u−8u2+8u3+4u4−4u5
=4−4u−8u2+8u3+4u4−4u5
12وسّع:1
12
1a=1فعّل القانون=1
4−4u−8u2+8u3+4u4−4u5=1
4−4u−8u2+8u3+4u4−4u5=1
4−4u−8u2+8u3+4u4−4u5=1حلّ:u≈−1.15774…,u≈0.52439…,u≈−0.79147…
4−4u−8u2+8u3+4u4−4u5=1
انقل 1إلى الجانب الأيسر
4−4u−8u2+8u3+4u4−4u5=1
من الطرفين 1اطرح4−4u−8u2+8u3+4u4−4u5−1=1−1
بسّط−4u5+4u4+8u3−8u2−4u+3=0
−4u5+4u4+8u3−8u2−4u+3=0
بطريقة نيوتون ريبسون −4u5+4u4+8u3−8u2−4u+3=0جدّ حلًا لـ:u≈−1.15774…
−4u5+4u4+8u3−8u2−4u+3=0
تعريف تقريب نيوتن-ريبسون
f(u)=−4u5+4u4+8u3−8u2−4u+3
f′(u)جد:−20u4+16u3+24u2−16u−4
dud(−4u5+4u4+8u3−8u2−4u+3)
(f±g)′=f′±g′ :استعمل قانون الجمع=−dud(4u5)+dud(4u4)+dud(8u3)−dud(8u2)−dud(4u)+dud(3)
dud(4u5)=20u4
dud(4u5)
(a⋅f)′=a⋅f′ :استخرج الثابت=4dud(u5)
dxd(xa)=a⋅xa−1 :استعمل قانون الأسس=4⋅5u5−1
بسّط=20u4
dud(4u4)=16u3
dud(4u4)
(a⋅f)′=a⋅f′ :استخرج الثابت=4dud(u4)
dxd(xa)=a⋅xa−1 :استعمل قانون الأسس=4⋅4u4−1
بسّط=16u3
dud(8u3)=24u2
dud(8u3)
(a⋅f)′=a⋅f′ :استخرج الثابت=8dud(u3)
dxd(xa)=a⋅xa−1 :استعمل قانون الأسس=8⋅3u3−1
بسّط=24u2
dud(8u2)=16u
dud(8u2)
(a⋅f)′=a⋅f′ :استخرج الثابت=8dud(u2)
dxd(xa)=a⋅xa−1 :استعمل قانون الأسس=8⋅2u2−1
بسّط=16u
dud(4u)=4
dud(4u)
(a⋅f)′=a⋅f′ :استخرج الثابت=4dudu
dudu=1 :استعمل المشتقة الأساسية=4⋅1
بسّط=4
dud(3)=0
dud(3)
dxd(a)=0 :مشتقة الثابت=0
=−20u4+16u3+24u2−16u−4+0
بسّط=−20u4+16u3+24u2−16u−4
u0=2استبدل Δun+1<0.000001حتّى un+1احسب
u1=1.71969…:Δu1=0.28030…
f(u0)=−4⋅25+4⋅24+8⋅23−8⋅22−4⋅2+3=−37f′(u0)=−20⋅24+16⋅23+24⋅22−16⋅2−4=−132u1=1.71969…
Δu1=∣1.71969…−2∣=0.28030…Δu1=0.28030…
u2=1.49728…:Δu2=0.22241…
f(u1)=−4⋅1.71969…5+4⋅1.71969…4+8⋅1.71969…3−8⋅1.71969…2−4⋅1.71969…+3=−12.02935…f′(u1)=−20⋅1.71969…4+16⋅1.71969…3+24⋅1.71969…2−16⋅1.71969…−4=−54.08571…u2=1.49728…
Δu2=∣1.49728…−1.71969…∣=0.22241…Δu2=0.22241…
u3=1.30324…:Δu3=0.19403…
f(u2)=−4⋅1.49728…5+4⋅1.49728…4+8⋅1.49728…3−8⋅1.49728…2−4⋅1.49728…+3=−4.06767…f′(u2)=−20⋅1.49728…4+16⋅1.49728…3+24⋅1.49728…2−16⋅1.49728…−4=−20.96340…u3=1.30324…
Δu3=∣1.30324…−1.49728…∣=0.19403…Δu3=0.19403…
u4=1.05328…:Δu4=0.24996…
f(u3)=−4⋅1.30324…5+4⋅1.30324…4+8⋅1.30324…3−8⋅1.30324…2−4⋅1.30324…+3=−1.59173…f′(u3)=−20⋅1.30324…4+16⋅1.30324…3+24⋅1.30324…2−16⋅1.30324…−4=−6.36786…u4=1.05328…
Δu4=∣1.05328…−1.30324…∣=0.24996…Δu4=0.24996…
u5=−5.80799…:Δu5=6.86128…
f(u4)=−4⋅1.05328…5+4⋅1.05328…4+8⋅1.05328…3−8⋅1.05328…2−4⋅1.05328…+3=−1.00255…f′(u4)=−20⋅1.05328…4+16⋅1.05328…3+24⋅1.05328…2−16⋅1.05328…−4=−0.14611…u5=−5.80799…
Δu5=∣−5.80799…−1.05328…∣=6.86128…Δu5=6.86128…
u6=−4.64067…:Δu6=1.16732…
f(u5)=−4(−5.80799…)5+4(−5.80799…)4+8(−5.80799…)3−8(−5.80799…)2−4(−5.80799…)+3=29176.40873…f′(u5)=−20(−5.80799…)4+16(−5.80799…)3+24(−5.80799…)2−16(−5.80799…)−4=−24994.29514…u6=−4.64067…
Δu6=∣−4.64067…−(−5.80799…)∣=1.16732…Δu6=1.16732…
u7=−3.71587…:Δu7=0.92480…
f(u6)=−4(−4.64067…)5+4(−4.64067…)4+8(−4.64067…)3−8(−4.64067…)2−4(−4.64067…)+3=9514.18126…f′(u6)=−20(−4.64067…)4+16(−4.64067…)3+24(−4.64067…)2−16(−4.64067…)−4=−10287.81312…u7=−3.71587…
Δu7=∣−3.71587…−(−4.64067…)∣=0.92480…Δu7=0.92480…
u8=−2.98754…:Δu8=0.72832…
f(u7)=−4(−3.71587…)5+4(−3.71587…)4+8(−3.71587…)3−8(−3.71587…)2−4(−3.71587…)+3=3093.32373…f′(u7)=−20(−3.71587…)4+16(−3.71587…)3+24(−3.71587…)2−16(−3.71587…)−4=−4247.14664…u8=−2.98754…
Δu8=∣−2.98754…−(−3.71587…)∣=0.72832…Δu8=0.72832…
u9=−2.41948…:Δu9=0.56806…
f(u8)=−4(−2.98754…)5+4(−2.98754…)4+8(−2.98754…)3−8(−2.98754…)2−4(−2.98754…)+3=1000.86681…f′(u8)=−20(−2.98754…)4+16(−2.98754…)3+24(−2.98754…)2−16(−2.98754…)−4=−1761.89279…u9=−2.41948…
Δu9=∣−2.41948…−(−2.98754…)∣=0.56806…Δu9=0.56806…
u10=−1.98344…:Δu10=0.43603…
f(u9)=−4(−2.41948…)5+4(−2.41948…)4+8(−2.41948…)3−8(−2.41948…)2−4(−2.41948…)+3=321.25479…f′(u9)=−20(−2.41948…)4+16(−2.41948…)3+24(−2.41948…)2−16(−2.41948…)−4=−736.76863…u10=−1.98344…
Δu10=∣−1.98344…−(−2.41948…)∣=0.43603…Δu10=0.43603…
u11=−1.65761…:Δu11=0.32583…
f(u10)=−4(−1.98344…)5+4(−1.98344…)4+8(−1.98344…)3−8(−1.98344…)2−4(−1.98344…)+3=101.73511…f′(u10)=−20(−1.98344…)4+16(−1.98344…)3+24(−1.98344…)2−16(−1.98344…)−4=−312.23335…u11=−1.65761…
Δu11=∣−1.65761…−(−1.98344…)∣=0.32583…Δu11=0.32583…
u12=−1.42520…:Δu12=0.23241…
f(u11)=−4(−1.65761…)5+4(−1.65761…)4+8(−1.65761…)3−8(−1.65761…)2−4(−1.65761…)+3=31.47022…f′(u11)=−20(−1.65761…)4+16(−1.65761…)3+24(−1.65761…)2−16(−1.65761…)−4=−135.40437…u12=−1.42520…
Δu12=∣−1.42520…−(−1.65761…)∣=0.23241…Δu12=0.23241…
u13=−1.27318…:Δu13=0.15201…
f(u12)=−4(−1.42520…)5+4(−1.42520…)4+8(−1.42520…)3−8(−1.42520…)2−4(−1.42520…)+3=9.31556…f′(u12)=−20(−1.42520…)4+16(−1.42520…)3+24(−1.42520…)2−16(−1.42520…)−4=−61.28130…u13=−1.27318…
Δu13=∣−1.27318…−(−1.42520…)∣=0.15201…Δu13=0.15201…
u14=−1.19046…:Δu14=0.08272…
f(u13)=−4(−1.27318…)5+4(−1.27318…)4+8(−1.27318…)3−8(−1.27318…)2−4(−1.27318…)+3=2.50663…f′(u13)=−20(−1.27318…)4+16(−1.27318…)3+24(−1.27318…)2−16(−1.27318…)−4=−30.29974…u14=−1.19046…
Δu14=∣−1.19046…−(−1.27318…)∣=0.08272…Δu14=0.08272…
u15=−1.16145…:Δu15=0.02900…
f(u14)=−4(−1.19046…)5+4(−1.19046…)4+8(−1.19046…)3−8(−1.19046…)2−4(−1.19046…)+3=0.52502…f′(u14)=−20(−1.19046…)4+16(−1.19046…)3+24(−1.19046…)2−16(−1.19046…)−4=−18.10266…u15=−1.16145…
Δu15=∣−1.16145…−(−1.19046…)∣=0.02900…Δu15=0.02900…
u16=−1.15780…:Δu16=0.00365…
f(u15)=−4(−1.16145…)5+4(−1.16145…)4+8(−1.16145…)3−8(−1.16145…)2−4(−1.16145…)+3=0.05297…f′(u15)=−20(−1.16145…)4+16(−1.16145…)3+24(−1.16145…)2−16(−1.16145…)−4=−14.50486…u16=−1.15780…
Δu16=∣−1.15780…−(−1.16145…)∣=0.00365…Δu16=0.00365…
u17=−1.15774…:Δu17=0.00005…
f(u16)=−4(−1.15780…)5+4(−1.15780…)4+8(−1.15780…)3−8(−1.15780…)2−4(−1.15780…)+3=0.00078…f′(u16)=−20(−1.15780…)4+16(−1.15780…)3+24(−1.15780…)2−16(−1.15780…)−4=−14.07518…u17=−1.15774…
Δu17=∣−1.15774…−(−1.15780…)∣=0.00005…Δu17=0.00005…
u18=−1.15774…:Δu18=1.29677E−8
f(u17)=−4(−1.15774…)5+4(−1.15774…)4+8(−1.15774…)3−8(−1.15774…)2−4(−1.15774…)+3=1.82438E−7f′(u17)=−20(−1.15774…)4+16(−1.15774…)3+24(−1.15774…)2−16(−1.15774…)−4=−14.06865…u18=−1.15774…
Δu18=∣−1.15774…−(−1.15774…)∣=1.29677E−8Δu18=1.29677E−8
u≈−1.15774…
فعّل القسمة الطويلة:u+1.15774…−4u5+4u4+8u3−8u2−4u+3=−4u4+8.63099…u3−1.99253…u2−5.69314…u+2.59123…
−4u4+8.63099…u3−1.99253…u2−5.69314…u+2.59123…≈0
بطريقة نيوتون ريبسون −4u4+8.63099…u3−1.99253…u2−5.69314…u+2.59123…=0جدّ حلًا لـ:u≈0.52439…
−4u4+8.63099…u3−1.99253…u2−5.69314…u+2.59123…=0
تعريف تقريب نيوتن-ريبسون
f(u)=−4u4+8.63099…u3−1.99253…u2−5.69314…u+2.59123…
f′(u)جد:−16u3+25.89299…u2−3.98507…u−5.69314…
dud(−4u4+8.63099…u3−1.99253…u2−5.69314…u+2.59123…)
(f±g)′=f′±g′ :استعمل قانون الجمع=−dud(4u4)+dud(8.63099…u3)−dud(1.99253…u2)−dud(5.69314…u)+dud(2.59123…)
dud(4u4)=16u3
dud(4u4)
(a⋅f)′=a⋅f′ :استخرج الثابت=4dud(u4)
dxd(xa)=a⋅xa−1 :استعمل قانون الأسس=4⋅4u4−1
بسّط=16u3
dud(8.63099…u3)=25.89299…u2
dud(8.63099…u3)
(a⋅f)′=a⋅f′ :استخرج الثابت=8.63099…dud(u3)
dxd(xa)=a⋅xa−1 :استعمل قانون الأسس=8.63099…⋅3u3−1
بسّط=25.89299…u2
dud(1.99253…u2)=3.98507…u
dud(1.99253…u2)
(a⋅f)′=a⋅f′ :استخرج الثابت=1.99253…dud(u2)
dxd(xa)=a⋅xa−1 :استعمل قانون الأسس=1.99253…⋅2u2−1
بسّط=3.98507…u
dud(5.69314…u)=5.69314…
dud(5.69314…u)
(a⋅f)′=a⋅f′ :استخرج الثابت=5.69314…dudu
dudu=1 :استعمل المشتقة الأساسية=5.69314…⋅1
بسّط=5.69314…
dud(2.59123…)=0
dud(2.59123…)
dxd(a)=0 :مشتقة الثابت=0
=−16u3+25.89299…u2−3.98507…u−5.69314…+0
بسّط=−16u3+25.89299…u2−3.98507…u−5.69314…
u0=0استبدل Δun+1<0.000001حتّى un+1احسب
u1=0.45514…:Δu1=0.45514…
f(u0)=−4⋅04+8.63099…⋅03−1.99253…⋅02−5.69314…⋅0+2.59123…=2.59123…f′(u0)=−16⋅03+25.89299…⋅02−3.98507…⋅0−5.69314…=−5.69314…u1=0.45514…
Δu1=∣0.45514…−0∣=0.45514…Δu1=0.45514…
u2=0.51796…:Δu2=0.06281…
f(u1)=−4⋅0.45514…4+8.63099…⋅0.45514…3−1.99253…⋅0.45514…2−5.69314…⋅0.45514…+2.59123…=0.22937…f′(u1)=−16⋅0.45514…3+25.89299…⋅0.45514…2−3.98507…⋅0.45514…−5.69314…=−3.65154…u2=0.51796…
Δu2=∣0.51796…−0.45514…∣=0.06281…Δu2=0.06281…
u3=0.52432…:Δu3=0.00635…
f(u2)=−4⋅0.51796…4+8.63099…⋅0.51796…3−1.99253…⋅0.51796…2−5.69314…⋅0.51796…+2.59123…=0.01929…f′(u2)=−16⋅0.51796…3+25.89299…⋅0.51796…2−3.98507…⋅0.51796…−5.69314…=−3.03391…u3=0.52432…
Δu3=∣0.52432…−0.51796…∣=0.00635…Δu3=0.00635…
u4=0.52439…:Δu4=0.00006…
f(u3)=−4⋅0.52432…4+8.63099…⋅0.52432…3−1.99253…⋅0.52432…2−5.69314…⋅0.52432…+2.59123…=0.00020…f′(u3)=−16⋅0.52432…3+25.89299…⋅0.52432…2−3.98507…⋅0.52432…−5.69314…=−2.97053…u4=0.52439…
Δu4=∣0.52439…−0.52432…∣=0.00006…Δu4=0.00006…
u5=0.52439…:Δu5=7.72366E−9
f(u4)=−4⋅0.52439…4+8.63099…⋅0.52439…3−1.99253…⋅0.52439…2−5.69314…⋅0.52439…+2.59123…=2.29382E−8f′(u4)=−16⋅0.52439…3+25.89299…⋅0.52439…2−3.98507…⋅0.52439…−5.69314…=−2.96985…u5=0.52439…
Δu5=∣0.52439…−0.52439…∣=7.72366E−9Δu5=7.72366E−9
u≈0.52439…
فعّل القسمة الطويلة:u−0.52439…−4u4+8.63099…u3−1.99253…u2−5.69314…u+2.59123…=−4u3+6.53342…u2+1.43354…u−4.94140…
−4u3+6.53342…u2+1.43354…u−4.94140…≈0
بطريقة نيوتون ريبسون −4u3+6.53342…u2+1.43354…u−4.94140…=0جدّ حلًا لـ:u≈−0.79147…
−4u3+6.53342…u2+1.43354…u−4.94140…=0
تعريف تقريب نيوتن-ريبسون
f(u)=−4u3+6.53342…u2+1.43354…u−4.94140…
f′(u)جد:−12u2+13.06685…u+1.43354…
dud(−4u3+6.53342…u2+1.43354…u−4.94140…)
(f±g)′=f′±g′ :استعمل قانون الجمع=−dud(4u3)+dud(6.53342…u2)+dud(1.43354…u)−dud(4.94140…)
dud(4u3)=12u2
dud(4u3)
(a⋅f)′=a⋅f′ :استخرج الثابت=4dud(u3)
dxd(xa)=a⋅xa−1 :استعمل قانون الأسس=4⋅3u3−1
بسّط=12u2
dud(6.53342…u2)=13.06685…u
dud(6.53342…u2)
(a⋅f)′=a⋅f′ :استخرج الثابت=6.53342…dud(u2)
dxd(xa)=a⋅xa−1 :استعمل قانون الأسس=6.53342…⋅2u2−1
بسّط=13.06685…u
dud(1.43354…u)=1.43354…
dud(1.43354…u)
(a⋅f)′=a⋅f′ :استخرج الثابت=1.43354…dudu
dudu=1 :استعمل المشتقة الأساسية=1.43354…⋅1
بسّط=1.43354…
dud(4.94140…)=0
dud(4.94140…)
dxd(a)=0 :مشتقة الثابت=0
=−12u2+13.06685…u+1.43354…−0
بسّط=−12u2+13.06685…u+1.43354…
u0=3استبدل Δun+1<0.000001حتّى un+1احسب
u1=2.26016…:Δu1=0.73983…
f(u0)=−4⋅33+6.53342…⋅32+1.43354…⋅3−4.94140…=−49.83990…f′(u0)=−12⋅32+13.06685…⋅3+1.43354…=−67.36588…u1=2.26016…
Δu1=∣2.26016…−3∣=0.73983…Δu1=0.73983…
u2=1.78183…:Δu2=0.47832…
f(u1)=−4⋅2.26016…3+6.53342…⋅2.26016…2+1.43354…⋅2.26016…−4.94140…=−14.50903…f′(u1)=−12⋅2.26016…2+13.06685…⋅2.26016…+1.43354…=−30.33318…u2=1.78183…
Δu2=∣1.78183…−2.26016…∣=0.47832…Δu2=0.47832…
u3=1.46256…:Δu3=0.31927…
f(u2)=−4⋅1.78183…3+6.53342…⋅1.78183…2+1.43354…⋅1.78183…−4.94140…=−4.27274…f′(u2)=−12⋅1.78183…2+13.06685…⋅1.78183…+1.43354…=−13.38281…u3=1.46256…
Δu3=∣1.46256…−1.78183…∣=0.31927…Δu3=0.31927…
u4=1.19261…:Δu4=0.26995…
f(u3)=−4⋅1.46256…3+6.53342…⋅1.46256…2+1.43354…⋅1.46256…−4.94140…=−1.38340…f′(u3)=−12⋅1.46256…2+13.06685…⋅1.46256…+1.43354…=−5.12454…u4=1.19261…
Δu4=∣1.19261…−1.46256…∣=0.26995…Δu4=0.26995…
u5=−13.10640…:Δu5=14.29901…
f(u4)=−4⋅1.19261…3+6.53342…⋅1.19261…2+1.43354…⋅1.19261…−4.94140…=−0.72421…f′(u4)=−12⋅1.19261…2+13.06685…⋅1.19261…+1.43354…=−0.05064…u5=−13.10640…
Δu5=∣−13.10640…−1.19261…∣=14.29901…Δu5=14.29901…
u6=−8.57776…:Δu6=4.52864…
f(u5)=−4(−13.10640…)3+6.53342…(−13.10640…)2+1.43354…(−13.10640…)−4.94140…=10104.13392…f′(u5)=−12(−13.10640…)2+13.06685…(−13.10640…)+1.43354…=−2231.16096…u6=−8.57776…
Δu6=∣−8.57776…−(−13.10640…)∣=4.52864…Δu6=4.52864…
u7=−5.57045…:Δu7=3.00730…
f(u6)=−4(−8.57776…)3+6.53342…(−8.57776…)2+1.43354…(−8.57776…)−4.94140…=2988.01817…f′(u6)=−12(−8.57776…)2+13.06685…(−8.57776…)+1.43354…=−993.58713…u7=−5.57045…
Δu7=∣−5.57045…−(−8.57776…)∣=3.00730…Δu7=3.00730…
u8=−3.58447…:Δu8=1.98598…
f(u7)=−4(−5.57045…)3+6.53342…(−5.57045…)2+1.43354…(−5.57045…)−4.94140…=881.21142…f′(u7)=−12(−5.57045…)2+13.06685…(−5.57045…)+1.43354…=−443.71510…u8=−3.58447…
Δu8=∣−3.58447…−(−5.57045…)∣=1.98598…Δu8=1.98598…
u9=−2.29137…:Δu9=1.29310…
f(u8)=−4(−3.58447…)3+6.53342…(−3.58447…)2+1.43354…(−3.58447…)−4.94140…=258.08452…f′(u8)=−12(−3.58447…)2+13.06685…(−3.58447…)+1.43354…=−199.58579…u9=−2.29137…
Δu9=∣−2.29137…−(−3.58447…)∣=1.29310…Δu9=1.29310…
u10=−1.48056…:Δu10=0.81081…
f(u9)=−4(−2.29137…)3+6.53342…(−2.29137…)2+1.43354…(−2.29137…)−4.94140…=74.19938…f′(u9)=−12(−2.29137…)2+13.06685…(−2.29137…)+1.43354…=−91.51226…u10=−1.48056…
Δu10=∣−1.48056…−(−2.29137…)∣=0.81081…Δu10=0.81081…
u11=−1.02282…:Δu11=0.45773…
f(u10)=−4(−1.48056…)3+6.53342…(−1.48056…)2+1.43354…(−1.48056…)−4.94140…=20.23972…f′(u10)=−12(−1.48056…)2+13.06685…(−1.48056…)+1.43354…=−44.21745…u11=−1.02282…
Δu11=∣−1.02282…−(−1.48056…)∣=0.45773…Δu11=0.45773…
u12=−0.83056…:Δu12=0.19226…
f(u11)=−4(−1.02282…)3+6.53342…(−1.02282…)2+1.43354…(−1.02282…)−4.94140…=4.70771…f′(u11)=−12(−1.02282…)2+13.06685…(−1.02282…)+1.43354…=−24.48576…u12=−0.83056…
Δu12=∣−0.83056…−(−1.02282…)∣=0.19226…Δu12=0.19226…
u13=−0.79288…:Δu13=0.03767…
f(u12)=−4(−0.83056…)3+6.53342…(−0.83056…)2+1.43354…(−0.83056…)−4.94140…=0.66678…f′(u12)=−12(−0.83056…)2+13.06685…(−0.83056…)+1.43354…=−17.69741…u13=−0.79288…
Δu13=∣−0.79288…−(−0.83056…)∣=0.03767…Δu13=0.03767…
u14=−0.79147…:Δu14=0.00140…
f(u13)=−4(−0.79288…)3+6.53342…(−0.79288…)2+1.43354…(−0.79288…)−4.94140…=0.0232093455f′(u13)=−12(−0.79288…)2+13.06685…(−0.79288…)+1.43354…=−16.47108…u14=−0.79147…
Δu14=∣−0.79147…−(−0.79288…)∣=0.00140…Δu14=0.00140…
u15=−0.79147…:Δu15=1.9392E−6
f(u14)=−4(−0.79147…)3+6.53342…(−0.79147…)2+1.43354…(−0.79147…)−4.94140…=0.00003…f′(u14)=−12(−0.79147…)2+13.06685…(−0.79147…)+1.43354…=−16.42588…u15=−0.79147…
Δu15=∣−0.79147…−(−0.79147…)∣=1.9392E−6Δu15=1.9392E−6
u16=−0.79147…:Δu16=3.6702E−12
f(u15)=−4(−0.79147…)3+6.53342…(−0.79147…)2+1.43354…(−0.79147…)−4.94140…=6.0286E−11f′(u15)=−12(−0.79147…)2+13.06685…(−0.79147…)+1.43354…=−16.42581…u16=−0.79147…
Δu16=∣−0.79147…−(−0.79147…)∣=3.6702E−12Δu16=3.6702E−12
u≈−0.79147…
فعّل القسمة الطويلة:u+0.79147…−4u3+6.53342…u2+1.43354…u−4.94140…=−4u2+9.69933…u−6.24326…
−4u2+9.69933…u−6.24326…≈0
بطريقة نيوتون ريبسون −4u2+9.69933…u−6.24326…=0جدّ حلًا لـ:u∈Rلا يوجد حلّ لـ
−4u2+9.69933…u−6.24326…=0
تعريف تقريب نيوتن-ريبسون
f(u)=−4u2+9.69933…u−6.24326…
f′(u)جد:−8u+9.69933…
dud(−4u2+9.69933…u−6.24326…)
(f±g)′=f′±g′ :استعمل قانون الجمع=−dud(4u2)+dud(9.69933…u)−dud(6.24326…)
dud(4u2)=8u
dud(4u2)
(a⋅f)′=a⋅f′ :استخرج الثابت=4dud(u2)
dxd(xa)=a⋅xa−1 :استعمل قانون الأسس=4⋅2u2−1
بسّط=8u
dud(9.69933…u)=9.69933…
dud(9.69933…u)
(a⋅f)′=a⋅f′ :استخرج الثابت=9.69933…dudu
dudu=1 :استعمل المشتقة الأساسية=9.69933…⋅1
بسّط=9.69933…
dud(6.24326…)=0
dud(6.24326…)
dxd(a)=0 :مشتقة الثابت=0
=−8u+9.69933…−0
بسّط=−8u+9.69933…
u0=1استبدل Δun+1<0.000001حتّى un+1احسب
u1=1.32008…:Δu1=0.32008…
f(u0)=−4⋅12+9.69933…⋅1−6.24326…=−0.54392…f′(u0)=−8⋅1+9.69933…=1.69933…u1=1.32008…
Δu1=∣1.32008…−1∣=0.32008…Δu1=0.32008…
u2=0.84428…:Δu2=0.47579…
f(u1)=−4⋅1.32008…2+9.69933…⋅1.32008…−6.24326…=−0.40980…f′(u1)=−8⋅1.32008…+9.69933…=−0.86130…u2=0.84428…
Δu2=∣0.84428…−1.32008…∣=0.47579…Δu2=0.47579…
u3=1.15175…:Δu3=0.30747…
f(u2)=−4⋅0.84428…2+9.69933…⋅0.84428…−6.24326…=−0.90553…f′(u2)=−8⋅0.84428…+9.69933…=2.94507…u3=1.15175…
Δu3=∣1.15175…−0.84428…∣=0.30747…Δu3=0.30747…
u4=1.93099…:Δu4=0.77924…
f(u3)=−4⋅1.15175…2+9.69933…⋅1.15175…−6.24326…=−0.37815…f′(u3)=−8⋅1.15175…+9.69933…=0.48529…u4=1.93099…
Δu4=∣1.93099…−1.15175…∣=0.77924…Δu4=0.77924…
u5=1.50848…:Δu5=0.42251…
f(u4)=−4⋅1.93099…2+9.69933…⋅1.93099…−6.24326…=−2.42887…f′(u4)=−8⋅1.93099…+9.69933…=−5.74865…u5=1.50848…
Δu5=∣1.50848…−1.93099…∣=0.42251…Δu5=0.42251…
u6=1.20700…:Δu6=0.30147…
f(u5)=−4⋅1.50848…2+9.69933…⋅1.50848…−6.24326…=−0.71406…f′(u5)=−8⋅1.50848…+9.69933…=−2.36855…u6=1.20700…
Δu6=∣1.20700…−1.50848…∣=0.30147…Δu6=0.30147…
u7=9.60809…:Δu7=8.40108…
f(u6)=−4⋅1.20700…2+9.69933…⋅1.20700…−6.24326…=−0.36355…f′(u6)=−8⋅1.20700…+9.69933…=0.04327…u7=9.60809…
Δu7=∣9.60809…−1.20700…∣=8.40108…Δu7=8.40108…
u8=5.40484…:Δu8=4.20324…
f(u7)=−4⋅9.60809…2+9.69933…⋅9.60809…−6.24326…=−282.31282…f′(u7)=−8⋅9.60809…+9.69933…=−67.16539…u8=5.40484…
Δu8=∣5.40484…−9.60809…∣=4.20324…Δu8=4.20324…
u9=3.29779…:Δu9=2.10704…
f(u8)=−4⋅5.40484…2+9.69933…⋅5.40484…−6.24326…=−70.66918…f′(u8)=−8⋅5.40484…+9.69933…=−33.53940…u9=3.29779…
Δu9=∣3.29779…−5.40484…∣=2.10704…Δu9=2.10704…
u10=2.23332…:Δu10=1.06447…
f(u9)=−4⋅3.29779…2+9.69933…⋅3.29779…−6.24326…=−17.75862…f′(u9)=−8⋅3.29779…+9.69933…=−16.68301…u10=2.23332…
Δu10=∣2.23332…−3.29779…∣=1.06447…Δu10=1.06447…
u11=1.67836…:Δu11=0.55495…
f(u10)=−4⋅2.23332…2+9.69933…⋅2.23332…−6.24326…=−4.53241…f′(u10)=−8⋅2.23332…+9.69933…=−8.16722…u11=1.67836…
Δu11=∣1.67836…−2.23332…∣=0.55495…Δu11=0.55495…
u12=1.34789…:Δu12=0.33047…
f(u11)=−4⋅1.67836…2+9.69933…⋅1.67836…−6.24326…=−1.23188…f′(u11)=−8⋅1.67836…+9.69933…=−3.72761…u12=1.34789…
Δu12=∣1.34789…−1.67836…∣=0.33047…Δu12=0.33047…
u13=0.94482…:Δu13=0.40307…
f(u12)=−4⋅1.34789…2+9.69933…⋅1.34789…−6.24326…=−0.43685…f′(u12)=−8⋅1.34789…+9.69933…=−1.08381…u13=0.94482…
Δu13=∣0.94482…−1.34789…∣=0.40307…Δu13=0.40307…
لا يمكن إيجاد حلّ
The solutions areu≈−1.15774…,u≈0.52439…,u≈−0.79147…
u≈−1.15774…,u≈0.52439…,u≈−0.79147…
افحص الإجبات:u≈−1.15774…خطأ,u≈0.52439…صحيح,u≈−0.79147…صحيح
للتحقّق من دقّة الحلول −1+(1−u2)⋅21−u=0عوّض الحلول في
إلغي الحلول التي تعطي قضيّة كذب
u≈−1.15774…استبدل:خطأ
−1+(1−(−1.15774…)2)⋅21−(−1.15774…)=0
−1+(1−(−1.15774…)2)⋅21−(−1.15774…)=−2
−1+(1−(−1.15774…)2)⋅21−(−1.15774…)
−(−a)=aفعّل القانون=−1+(1−(−1.15774…)2)⋅21+1.15774…
(1−(−1.15774…)2)⋅21+1.15774…=−0.68076…2.15774…
(1−(−1.15774…)2)⋅21+1.15774…
(−1.15774…)2=1.34038…
(−1.15774…)2
زوجيّnإذا تحقّق أنّ ,(−a)n=an :فعّل قانون القوى(−1.15774…)2=1.15774…2=1.15774…2
1.15774…2=1.34038…=1.34038…
=2(1−1.34038…)1+1.15774…
1+1.15774…=2.15774…:اجمع الأعداد=22.15774…(1−1.34038…)
1−1.34038…=−0.34038…:اطرح الأعداد=2(−0.34038…)2.15774…
(−a)=−a :احذف الأقواس=−0.34038…⋅22.15774…
0.34038…⋅2=0.68076…:اضرب الأعداد=−0.68076…2.15774…
=−1−0.68076…2.15774…
0.68076…2.15774…=1
0.68076…2.15774…
2.15774…=1.46892…=0.68076…⋅1.46892…
0.68076…⋅1.46892…=1:اضرب الأعداد=1
=−1−1
−1−1=−2:اطرح الأعداد=−2
−2=0
خطأ
u≈0.52439…استبدل:صحيح
−1+(1−0.52439…2)⋅21−0.52439…=0
−1+(1−0.52439…2)⋅21−0.52439…=5.0E−15
−1+(1−0.52439…2)⋅21−0.52439…
(1−0.52439…2)⋅21−0.52439…=1.45002…0.47560…
(1−0.52439…2)⋅21−0.52439…
0.52439…2=0.27498…=2(1−0.27498…)1−0.52439…
1−0.52439…=0.47560…:اطرح الأعداد=20.47560…(1−0.27498…)
1−0.27498…=0.72501…:اطرح الأعداد=2⋅0.72501…0.47560…
0.72501…⋅2=1.45002…:اضرب الأعداد=1.45002…0.47560…
=−1+1.45002…0.47560…
1.45002…0.47560…=1
1.45002…0.47560…
0.47560…=0.68964…=0.68964…⋅1.45002…
1.45002…⋅0.68964…=1:اضرب الأعداد=1
=−1+1
−1+1=5.0E−15:اطرح/اجمع الأعداد=5.0E−15
5.0E−15=0
صحيح
u≈−0.79147…استبدل:صحيح
−1+(1−(−0.79147…)2)⋅21−(−0.79147…)=0
−1+(1−(−0.79147…)2)⋅21−(−0.79147…)=5.0E−15
−1+(1−(−0.79147…)2)⋅21−(−0.79147…)
−(−a)=aفعّل القانون=−1+(1−(−0.79147…)2)⋅21+0.79147…
(1−(−0.79147…)2)⋅21+0.79147…=0.74712…1.79147…
(1−(−0.79147…)2)⋅21+0.79147…
(−0.79147…)2=0.62643…
(−0.79147…)2
زوجيّnإذا تحقّق أنّ ,(−a)n=an :فعّل قانون القوى(−0.79147…)2=0.79147…2=0.79147…2
0.79147…2=0.62643…=0.62643…
=2(1−0.62643…)1+0.79147…
1+0.79147…=1.79147…:اجمع الأعداد=21.79147…(1−0.62643…)
1−0.62643…=0.37356…:اطرح الأعداد=2⋅0.37356…1.79147…
0.37356…⋅2=0.74712…:اضرب الأعداد=0.74712…1.79147…
=−1+0.74712…1.79147…
0.74712…1.79147…=1
0.74712…1.79147…
1.79147…=1.33846…=0.74712…⋅1.33846…
0.74712…⋅1.33846…=1:اضرب الأعداد=1
=−1+1
−1+1=5.0E−15:اطرح/اجمع الأعداد=5.0E−15
5.0E−15=0
صحيح
The solutions areu≈0.52439…,u≈−0.79147…
u=cos(x)استبدل مجددًاcos(x)≈0.52439…,cos(x)≈−0.79147…
cos(x)≈0.52439…,cos(x)≈−0.79147…
cos(x)=0.52439…:x=arccos(0.52439…)+2πn,x=2π−arccos(0.52439…)+2πn
cos(x)=0.52439…
Apply trig inverse properties
cos(x)=0.52439…
cos(x)=0.52439…:حلول عامّة لـcos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(0.52439…)+2πn,x=2π−arccos(0.52439…)+2πn
x=arccos(0.52439…)+2πn,x=2π−arccos(0.52439…)+2πn
cos(x)=−0.79147…:x=arccos(−0.79147…)+2πn,x=−arccos(−0.79147…)+2πn
cos(x)=−0.79147…
Apply trig inverse properties
cos(x)=−0.79147…
cos(x)=−0.79147…:حلول عامّة لـcos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(−0.79147…)+2πn,x=−arccos(−0.79147…)+2πn
x=arccos(−0.79147…)+2πn,x=−arccos(−0.79147…)+2πn
وحّد الحلولx=arccos(0.52439…)+2πn,x=2π−arccos(0.52439…)+2πn,x=arccos(−0.79147…)+2πn,x=−arccos(−0.79147…)+2πn
أظهر الحلّ بالتمثيل العشريّx=1.01879…+2πn,x=2π−1.01879…+2πn,x=2.48401…+2πn,x=−2.48401…+2πn