Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
range of f(x)=2-sqrt(x+4)
range\:f(x)=2-\sqrt{x+4}
critical f(x)=4xe^{5x}
critical\:f(x)=4xe^{5x}
inflection ln(x-5)
inflection\:\ln(x-5)
domain of f(x)=(x^2+x)/(-3x+3)
domain\:f(x)=\frac{x^{2}+x}{-3x+3}
extreme f(x)=-2x^2+8x-7
extreme\:f(x)=-2x^{2}+8x-7
periodicity of f(x)=-3tan(pix)
periodicity\:f(x)=-3\tan(πx)
critical-x^3-9x^2+14x+24
critical\:-x^{3}-9x^{2}+14x+24
domain of f(x)=(x^2-4x-12)/(x+1)
domain\:f(x)=\frac{x^{2}-4x-12}{x+1}
asymptotes of f(x)=(18x^2)/(9x^2+5)
asymptotes\:f(x)=\frac{18x^{2}}{9x^{2}+5}
domain of sqrt(1+x^2)
domain\:\sqrt{1+x^{2}}
extreme-x^3+9x^2-27x+8
extreme\:-x^{3}+9x^{2}-27x+8
domain of 1/(sqrt(t))
domain\:\frac{1}{\sqrt{t}}
parity (1+sin(x))/(x+cos(x))
parity\:\frac{1+\sin(x)}{x+\cos(x)}
inverse of f(x)=(x+3)^2-8
inverse\:f(x)=(x+3)^{2}-8
extreme f(x)=x^2+12x+40
extreme\:f(x)=x^{2}+12x+40
domain of f(x)=(log_{2}(x))+8
domain\:f(x)=(\log_{2}(x))+8
domain of f(x)=2*3^x
domain\:f(x)=2\cdot\:3^{x}
simplify (-4.8)(-2.1)
simplify\:(-4.8)(-2.1)
asymptotes of f(x)=(4x^2+x-9)/(x^2+x-56)
asymptotes\:f(x)=\frac{4x^{2}+x-9}{x^{2}+x-56}
intercepts of f(x)=2x-6
intercepts\:f(x)=2x-6
extreme 1/(x-1)
extreme\:\frac{1}{x-1}
extreme (x^2+6)^{2/5}
extreme\:(x^{2}+6)^{\frac{2}{5}}
domain of f(x)=(x^2)/(x^2+4)
domain\:f(x)=\frac{x^{2}}{x^{2}+4}
inverse of cos(3θ)
inverse\:\cos(3θ)
slope ofintercept-8x-y+57=0
slopeintercept\:-8x-y+57=0
symmetry x^2+16x+61
symmetry\:x^{2}+16x+61
inverse of (1-2x)/(x+1)
inverse\:\frac{1-2x}{x+1}
domain of f(x)=-sqrt(25-x^2)
domain\:f(x)=-\sqrt{25-x^{2}}
domain of 1-x-x^2
domain\:1-x-x^{2}
parity f(x)=x^4-2x^2+4
parity\:f(x)=x^{4}-2x^{2}+4
inverse of f(x)=-2x+100
inverse\:f(x)=-2x+100
domain of x^2-5x
domain\:x^{2}-5x
inverse of f(x)=ln(5t)
inverse\:f(x)=\ln(5t)
domain of f(x)=(2x)/(x^2-25)
domain\:f(x)=\frac{2x}{x^{2}-25}
intercepts of f(x)=((5x+2))/x
intercepts\:f(x)=\frac{(5x+2)}{x}
domain of f(x)=(12x+35)/(x^2+7x)
domain\:f(x)=\frac{12x+35}{x^{2}+7x}
asymptotes of (4/10)^x
asymptotes\:(\frac{4}{10})^{x}
critical f(x)=2x^3-96x+42
critical\:f(x)=2x^{3}-96x+42
asymptotes of f(x)=((x+2))/(x^2+4x-5)
asymptotes\:f(x)=\frac{(x+2)}{x^{2}+4x-5}
domain of y=e^{x+1}
domain\:y=e^{x+1}
extreme f(x)=x^2(x-a)
extreme\:f(x)=x^{2}(x-a)
parallel y=(-2)/3 x+13
parallel\:y=\frac{-2}{3}x+13
domain of f(x)=sqrt(x-1)-2
domain\:f(x)=\sqrt{x-1}-2
intercepts of (3x^2-10x+8)/(x-5)
intercepts\:\frac{3x^{2}-10x+8}{x-5}
asymptotes of f(x)=(x^2-4x-5)/(x-3)
asymptotes\:f(x)=\frac{x^{2}-4x-5}{x-3}
asymptotes of f(x)=(x^2-25)/(x+5)
asymptotes\:f(x)=\frac{x^{2}-25}{x+5}
critical f(x)=x^{2/3}(x+3)
critical\:f(x)=x^{\frac{2}{3}}(x+3)
domain of f(x)= 1/(x^6)
domain\:f(x)=\frac{1}{x^{6}}
domain of 1/(e^x-2)
domain\:\frac{1}{e^{x}-2}
domain of f(x)=(x+5)/(x^2-4)
domain\:f(x)=\frac{x+5}{x^{2}-4}
asymptotes of f(x)= 1/(x^2-3x)
asymptotes\:f(x)=\frac{1}{x^{2}-3x}
domain of 1/x
domain\:\frac{1}{x}
extreme f(x)=x^2-9
extreme\:f(x)=x^{2}-9
symmetry y=x^2-2x-63
symmetry\:y=x^{2}-2x-63
inflection f(x)=x^3+12x+5
inflection\:f(x)=x^{3}+12x+5
inverse of f(x)=6^x
inverse\:f(x)=6^{x}
midpoint (0,5),(-2, 1/3)
midpoint\:(0,5),(-2,\frac{1}{3})
domain of f(x)=sqrt(4x-32)
domain\:f(x)=\sqrt{4x-32}
intercepts of (-2x-7)/(3x-1)
intercepts\:\frac{-2x-7}{3x-1}
parallel 3y=-2x+6,(2,2)
parallel\:3y=-2x+6,(2,2)
domain of f(x)= 2/(sqrt(x-3)-1)
domain\:f(x)=\frac{2}{\sqrt{x-3}-1}
parity (sin(2x))/(x+tan(8x))
parity\:\frac{\sin(2x)}{x+\tan(8x)}
symmetry y=5x^5-7x^3
symmetry\:y=5x^{5}-7x^{3}
inverse of f(x)=sqrt(x+2)-5
inverse\:f(x)=\sqrt{x+2}-5
slope of 4x+2y=20
slope\:4x+2y=20
asymptotes of f(x)=(x^2-36)/(x-6)
asymptotes\:f(x)=\frac{x^{2}-36}{x-6}
asymptotes of f(x)=((2x-3))/(x+4)
asymptotes\:f(x)=\frac{(2x-3)}{x+4}
intercepts of (x-3)/(x^2-5x+6)
intercepts\:\frac{x-3}{x^{2}-5x+6}
asymptotes of (520e^{5x})/(7+e^{5x)}
asymptotes\:\frac{520e^{5x}}{7+e^{5x}}
range of f(x)=(1/2)^{(x-3)}
range\:f(x)=(\frac{1}{2})^{(x-3)}
inverse of f(x)=x^2+12x+32
inverse\:f(x)=x^{2}+12x+32
slope ofintercept-5x-6=3y
slopeintercept\:-5x-6=3y
inverse of f(x)=\sqrt[3]{4x+5}
inverse\:f(x)=\sqrt[3]{4x+5}
extreme f(x)=xsqrt(x+1)
extreme\:f(x)=x\sqrt{x+1}
range of x^2-8x+7
range\:x^{2}-8x+7
extreme f(x)=xsqrt(64-x^2)
extreme\:f(x)=x\sqrt{64-x^{2}}
intercepts of f(x)=((x^2-1))/((2x))
intercepts\:f(x)=\frac{(x^{2}-1)}{(2x)}
parity f(x)=sqrt(7)x
parity\:f(x)=\sqrt{7}x
range of y=sqrt(x-8)
range\:y=\sqrt{x-8}
domain of 6/x
domain\:\frac{6}{x}
extreme f(x)=5
extreme\:f(x)=5
domain of y= 1/(sqrt(x))
domain\:y=\frac{1}{\sqrt{x}}
slope ofintercept 1/2
slopeintercept\:\frac{1}{2}
domain of f(x)=(x^2-4x)^2-4(x^2-4x)
domain\:f(x)=(x^{2}-4x)^{2}-4(x^{2}-4x)
inverse of f(x)=x-1/x
inverse\:f(x)=x-\frac{1}{x}
asymptotes of (2x(x-1)^2)/((x+1)^3)
asymptotes\:\frac{2x(x-1)^{2}}{(x+1)^{3}}
intercepts of (x^2-2x-3)/x
intercepts\:\frac{x^{2}-2x-3}{x}
intercepts of f(x)= 1/(x-6)
intercepts\:f(x)=\frac{1}{x-6}
distance (3,4.6904),(0,0)
distance\:(3,4.6904),(0,0)
range of f(x)=(x^2-x-2)/(x-3)
range\:f(x)=\frac{x^{2}-x-2}{x-3}
extreme f(x)=sqrt(6x^3+8x^2)
extreme\:f(x)=\sqrt{6x^{3}+8x^{2}}
intercepts of f(x)=-5x^2-30x-42
intercepts\:f(x)=-5x^{2}-30x-42
line (-1,4),(1,-6)
line\:(-1,4),(1,-6)
asymptotes of f(x)=(x^3+5)/(x^5+2)
asymptotes\:f(x)=\frac{x^{3}+5}{x^{5}+2}
range of f(x)=-1/3 sqrt(x)
range\:f(x)=-\frac{1}{3}\sqrt{x}
intercepts of f(x)=4x^4+12x^3-40x^2
intercepts\:f(x)=4x^{4}+12x^{3}-40x^{2}
extreme (2x)/3+(x+1)^{2/3}
extreme\:\frac{2x}{3}+(x+1)^{\frac{2}{3}}
inverse of f(x)=\sqrt[4]{24-8x}
inverse\:f(x)=\sqrt[4]{24-8x}
inverse of f(x)=(2x^3-6)/9
inverse\:f(x)=\frac{2x^{3}-6}{9}
domain of f(x)=(sqrt(x+7))/(x-5)
domain\:f(x)=\frac{\sqrt{x+7}}{x-5}
1
..
134
135
136
137
138
..
1324