Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
AI Chat
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Trigonometrie >

3sin^2(x)=8cos(x)

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

3sin2(x)=8cos(x)

Lösung

x=1.23095…+2πn,x=2π−1.23095…+2πn
+1
Grad
x=70.52877…∘+360∘n,x=289.47122…∘+360∘n
Schritte zur Lösung
3sin2(x)=8cos(x)
Subtrahiere 8cos(x) von beiden Seiten3sin2(x)−8cos(x)=0
Umschreiben mit Hilfe von Trigonometrie-Identitäten
3sin2(x)−8cos(x)
Verwende die Pythagoreische Identität: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=3(1−cos2(x))−8cos(x)
(1−cos2(x))⋅3−8cos(x)=0
Löse mit Substitution
(1−cos2(x))⋅3−8cos(x)=0
Angenommen: cos(x)=u(1−u2)⋅3−8u=0
(1−u2)⋅3−8u=0:u=−3,u=31​
(1−u2)⋅3−8u=0
Schreibe (1−u2)⋅3−8uum:3−3u2−8u
(1−u2)⋅3−8u
=3(1−u2)−8u
Multipliziere aus 3(1−u2):3−3u2
3(1−u2)
Wende das Distributivgesetz an: a(b−c)=ab−aca=3,b=1,c=u2=3⋅1−3u2
Multipliziere die Zahlen: 3⋅1=3=3−3u2
=3−3u2−8u
3−3u2−8u=0
Schreibe in der Standard Form ax2+bx+c=0−3u2−8u+3=0
Löse mit der quadratischen Formel
−3u2−8u+3=0
Quadratische Formel für Gliechungen:
Für a=−3,b=−8,c=3u1,2​=2(−3)−(−8)±(−8)2−4(−3)⋅3​​
u1,2​=2(−3)−(−8)±(−8)2−4(−3)⋅3​​
(−8)2−4(−3)⋅3​=10
(−8)2−4(−3)⋅3​
Wende Regel an −(−a)=a=(−8)2+4⋅3⋅3​
Wende Exponentenregel an: (−a)n=an,wenn n gerade ist(−8)2=82=82+4⋅3⋅3​
Multipliziere die Zahlen: 4⋅3⋅3=36=82+36​
82=64=64+36​
Addiere die Zahlen: 64+36=100=100​
Faktorisiere die Zahl: 100=102=102​
Wende Radikal Regel an: nan​=a102​=10=10
u1,2​=2(−3)−(−8)±10​
Trenne die Lösungenu1​=2(−3)−(−8)+10​,u2​=2(−3)−(−8)−10​
u=2(−3)−(−8)+10​:−3
2(−3)−(−8)+10​
Entferne die Klammern: (−a)=−a,−(−a)=a=−2⋅38+10​
Addiere die Zahlen: 8+10=18=−2⋅318​
Multipliziere die Zahlen: 2⋅3=6=−618​
Wende Bruchregel an: −ba​=−ba​=−618​
Teile die Zahlen: 618​=3=−3
u=2(−3)−(−8)−10​:31​
2(−3)−(−8)−10​
Entferne die Klammern: (−a)=−a,−(−a)=a=−2⋅38−10​
Subtrahiere die Zahlen: 8−10=−2=−2⋅3−2​
Multipliziere die Zahlen: 2⋅3=6=−6−2​
Wende Bruchregel an: −b−a​=ba​=62​
Streiche die gemeinsamen Faktoren: 2=31​
Die Lösungen für die quadratische Gleichung sind: u=−3,u=31​
Setze in u=cos(x)eincos(x)=−3,cos(x)=31​
cos(x)=−3,cos(x)=31​
cos(x)=−3:Keine Lösung
cos(x)=−3
−1≤cos(x)≤1KeineLo¨sung
cos(x)=31​:x=arccos(31​)+2πn,x=2π−arccos(31​)+2πn
cos(x)=31​
Wende die Eigenschaften der Trigonometrie an
cos(x)=31​
Allgemeine Lösung für cos(x)=31​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(31​)+2πn,x=2π−arccos(31​)+2πn
x=arccos(31​)+2πn,x=2π−arccos(31​)+2πn
Kombiniere alle Lösungenx=arccos(31​)+2πn,x=2π−arccos(31​)+2πn
Zeige Lösungen in Dezimalform x=1.23095…+2πn,x=2π−1.23095…+2πn

Graph

Sorry, your browser does not support this application
Interaktives Diagramm anzeigen

Beliebte Beispiele

7cos(x)-24sin(x)=107cos(x)−24sin(x)=104cos(2θ)+1=2cos(θ)4cos(2θ)+1=2cos(θ)2sin^3(x)=2sin(x)2sin3(x)=2sin(x)sin^4(x)=0sin4(x)=0tan(θ)= 7/24tan(θ)=247​
LernwerkzeugeKI-Mathe-LöserAI ChatArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-Erweiterung
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenService TermsCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024