解答
tan(x+4π)−tan(x−4π)=3
解答
x=−0.42053…+πn,x=0.42053…+πn
+1
度数
x=−24.09484…∘+180∘n,x=24.09484…∘+180∘n求解步骤
tan(x+4π)−tan(x−4π)=3
使用三角恒等式改写
tan(x+4π)−tan(x−4π)=3
使用三角恒等式改写
tan(x−4π)
使用基本三角恒等式: tan(x)=cos(x)sin(x)=cos(x−4π)sin(x−4π)
使用角差恒等式: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=cos(x−4π)sin(x)cos(4π)−cos(x)sin(4π)
使用角差恒等式: cos(s−t)=cos(s)cos(t)+sin(s)sin(t)=cos(x)cos(4π)+sin(x)sin(4π)sin(x)cos(4π)−cos(x)sin(4π)
化简 cos(x)cos(4π)+sin(x)sin(4π)sin(x)cos(4π)−cos(x)sin(4π):cos(x)+sin(x)sin(x)−cos(x)
cos(x)cos(4π)+sin(x)sin(4π)sin(x)cos(4π)−cos(x)sin(4π)
sin(x)cos(4π)−cos(x)sin(4π)=22sin(x)−22cos(x)
sin(x)cos(4π)−cos(x)sin(4π)
化简 cos(4π):22
cos(4π)
使用以下普通恒等式:cos(4π)=22
cos(x) 周期表(周期为 2πn):
x06π4π3π2π32π43π65πcos(x)12322210−21−22−23xπ67π45π34π23π35π47π611πcos(x)−1−23−22−210212223
=22=22sin(x)−sin(4π)cos(x)
化简 sin(4π):22
sin(4π)
使用以下普通恒等式:sin(4π)=22
sin(x) 周期表(周期为 2πn"):
x06π4π3π2π32π43π65πsin(x)02122231232221xπ67π45π34π23π35π47π611πsin(x)0−21−22−23−1−23−22−21
=22=22sin(x)−22cos(x)
=cos(4π)cos(x)+sin(4π)sin(x)22sin(x)−22cos(x)
cos(x)cos(4π)+sin(x)sin(4π)=22cos(x)+22sin(x)
cos(x)cos(4π)+sin(x)sin(4π)
化简 cos(4π):22
cos(4π)
使用以下普通恒等式:cos(4π)=22
cos(x) 周期表(周期为 2πn):
x06π4π3π2π32π43π65πcos(x)12322210−21−22−23xπ67π45π34π23π35π47π611πcos(x)−1−23−22−210212223
=22=22cos(x)+sin(4π)sin(x)
化简 sin(4π):22
sin(4π)
使用以下普通恒等式:sin(4π)=22
sin(x) 周期表(周期为 2πn"):
x06π4π3π2π32π43π65πsin(x)02122231232221xπ67π45π34π23π35π47π611πsin(x)0−21−22−23−1−23−22−21
=22=22cos(x)+22sin(x)
=22cos(x)+22sin(x)22sin(x)−22cos(x)
乘 cos(x)22:22cos(x)
cos(x)22
分式相乘: a⋅cb=ca⋅b=22cos(x)
=22cos(x)+22sin(x)22sin(x)−22cos(x)
乘 sin(x)22:22sin(x)
sin(x)22
分式相乘: a⋅cb=ca⋅b=22sin(x)
=22cos(x)+22sin(x)22sin(x)−22cos(x)
乘 sin(x)22:22sin(x)
sin(x)22
分式相乘: a⋅cb=ca⋅b=22sin(x)
=22cos(x)+22sin(x)22sin(x)−22cos(x)
乘 cos(x)22:22cos(x)
cos(x)22
分式相乘: a⋅cb=ca⋅b=22cos(x)
=22cos(x)+22sin(x)22sin(x)−22cos(x)
合并分式 22cos(x)+22sin(x):22cos(x)+2sin(x)
使用法则 ca±cb=ca±b=22cos(x)+2sin(x)
=22cos(x)+2sin(x)22sin(x)−22cos(x)
合并分式 22sin(x)−22cos(x):22sin(x)−2cos(x)
使用法则 ca±cb=ca±b=22sin(x)−2cos(x)
=22cos(x)+2sin(x)22sin(x)−2cos(x)
分式相除: dcba=b⋅ca⋅d=2(2cos(x)+2sin(x))(2sin(x)−2cos(x))⋅2
约分:2=2cos(x)+2sin(x)2sin(x)−2cos(x)
因式分解出通项 2=2cos(x)+2sin(x)2(sin(x)−cos(x))
因式分解出通项 2=2(cos(x)+sin(x))2(sin(x)−cos(x))
约分:2=cos(x)+sin(x)sin(x)−cos(x)
=cos(x)+sin(x)sin(x)−cos(x)
使用基本三角恒等式: tan(x)=cos(x)sin(x)=cos(x+4π)sin(x+4π)
使用角和恒等式: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=cos(x+4π)sin(x)cos(4π)+cos(x)sin(4π)
使用角和恒等式: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(x)cos(4π)−sin(x)sin(4π)sin(x)cos(4π)+cos(x)sin(4π)
化简 cos(x)cos(4π)−sin(x)sin(4π)sin(x)cos(4π)+cos(x)sin(4π):cos(x)−sin(x)sin(x)+cos(x)
cos(x)cos(4π)−sin(x)sin(4π)sin(x)cos(4π)+cos(x)sin(4π)
sin(x)cos(4π)+cos(x)sin(4π)=22sin(x)+22cos(x)
sin(x)cos(4π)+cos(x)sin(4π)
化简 cos(4π):22
cos(4π)
使用以下普通恒等式:cos(4π)=22
cos(x) 周期表(周期为 2πn):
x06π4π3π2π32π43π65πcos(x)12322210−21−22−23xπ67π45π34π23π35π47π611πcos(x)−1−23−22−210212223
=22=22sin(x)+sin(4π)cos(x)
化简 sin(4π):22
sin(4π)
使用以下普通恒等式:sin(4π)=22
sin(x) 周期表(周期为 2πn"):
x06π4π3π2π32π43π65πsin(x)02122231232221xπ67π45π34π23π35π47π611πsin(x)0−21−22−23−1−23−22−21
=22=22sin(x)+22cos(x)
=cos(4π)cos(x)−sin(4π)sin(x)22sin(x)+22cos(x)
cos(x)cos(4π)−sin(x)sin(4π)=22cos(x)−22sin(x)
cos(x)cos(4π)−sin(x)sin(4π)
化简 cos(4π):22
cos(4π)
使用以下普通恒等式:cos(4π)=22
cos(x) 周期表(周期为 2πn):
x06π4π3π2π32π43π65πcos(x)12322210−21−22−23xπ67π45π34π23π35π47π611πcos(x)−1−23−22−210212223
=22=22cos(x)−sin(4π)sin(x)
化简 sin(4π):22
sin(4π)
使用以下普通恒等式:sin(4π)=22
sin(x) 周期表(周期为 2πn"):
x06π4π3π2π32π43π65πsin(x)02122231232221xπ67π45π34π23π35π47π611πsin(x)0−21−22−23−1−23−22−21
=22=22cos(x)−22sin(x)
=22cos(x)−22sin(x)22sin(x)+22cos(x)
乘 cos(x)22:22cos(x)
cos(x)22
分式相乘: a⋅cb=ca⋅b=22cos(x)
=22cos(x)−22sin(x)22sin(x)+22cos(x)
乘 sin(x)22:22sin(x)
sin(x)22
分式相乘: a⋅cb=ca⋅b=22sin(x)
=22cos(x)−22sin(x)22sin(x)+22cos(x)
乘 sin(x)22:22sin(x)
sin(x)22
分式相乘: a⋅cb=ca⋅b=22sin(x)
=22cos(x)−22sin(x)22sin(x)+22cos(x)
乘 cos(x)22:22cos(x)
cos(x)22
分式相乘: a⋅cb=ca⋅b=22cos(x)
=22cos(x)−22sin(x)22sin(x)+22cos(x)
合并分式 22cos(x)−22sin(x):22cos(x)−2sin(x)
使用法则 ca±cb=ca±b=22cos(x)−2sin(x)
=22cos(x)−2sin(x)22sin(x)+22cos(x)
合并分式 22sin(x)+22cos(x):22sin(x)+2cos(x)
使用法则 ca±cb=ca±b=22sin(x)+2cos(x)
=22cos(x)−2sin(x)22sin(x)+2cos(x)
分式相除: dcba=b⋅ca⋅d=2(2cos(x)−2sin(x))(2sin(x)+2cos(x))⋅2
约分:2=2cos(x)−2sin(x)2sin(x)+2cos(x)
因式分解出通项 2=2cos(x)−2sin(x)2(sin(x)+cos(x))
因式分解出通项 2=2(cos(x)−sin(x))2(sin(x)+cos(x))
约分:2=cos(x)−sin(x)sin(x)+cos(x)
=cos(x)−sin(x)sin(x)+cos(x)
cos(x)−sin(x)sin(x)+cos(x)−cos(x)+sin(x)sin(x)−cos(x)=3
化简 cos(x)−sin(x)sin(x)+cos(x)−cos(x)+sin(x)sin(x)−cos(x):(cos(x)−sin(x))(cos(x)+sin(x))2sin2(x)+2cos2(x)
cos(x)−sin(x)sin(x)+cos(x)−cos(x)+sin(x)sin(x)−cos(x)
cos(x)−sin(x),cos(x)+sin(x)的最小公倍数:(cos(x)−sin(x))(cos(x)+sin(x))
cos(x)−sin(x),cos(x)+sin(x)
最小公倍数 (LCM)
计算出由出现在 cos(x)−sin(x) 或 cos(x)+sin(x)中的因子组成的表达式=(cos(x)−sin(x))(cos(x)+sin(x))
根据最小公倍数调整分式
将每个分子乘以其分母转变为最小公倍数所要乘以的同一数值 (cos(x)−sin(x))(cos(x)+sin(x))
对于 cos(x)−sin(x)sin(x)+cos(x):将分母和分子乘以 cos(x)+sin(x)cos(x)−sin(x)sin(x)+cos(x)=(cos(x)−sin(x))(cos(x)+sin(x))(sin(x)+cos(x))(cos(x)+sin(x))=(cos(x)−sin(x))(cos(x)+sin(x))(sin(x)+cos(x))2
对于 cos(x)+sin(x)sin(x)−cos(x):将分母和分子乘以 cos(x)−sin(x)cos(x)+sin(x)sin(x)−cos(x)=(cos(x)+sin(x))(cos(x)−sin(x))(sin(x)−cos(x))(cos(x)−sin(x))
=(cos(x)−sin(x))(cos(x)+sin(x))(sin(x)+cos(x))2−(cos(x)+sin(x))(cos(x)−sin(x))(sin(x)−cos(x))(cos(x)−sin(x))
因为分母相等,所以合并分式: ca±cb=ca±b=(cos(x)−sin(x))(cos(x)+sin(x))(sin(x)+cos(x))2−(sin(x)−cos(x))(cos(x)−sin(x))
乘开 (sin(x)+cos(x))2−(sin(x)−cos(x))(cos(x)−sin(x)):2sin2(x)+2cos2(x)
(sin(x)+cos(x))2−(sin(x)−cos(x))(cos(x)−sin(x))
(sin(x)+cos(x))2:sin2(x)+2sin(x)cos(x)+cos2(x)
使用完全平方公式: (a+b)2=a2+2ab+b2a=sin(x),b=cos(x)
=sin2(x)+2sin(x)cos(x)+cos2(x)
=sin2(x)+2sin(x)cos(x)+cos2(x)−(sin(x)−cos(x))(cos(x)−sin(x))
乘开 −(sin(x)−cos(x))(cos(x)−sin(x)):−2cos(x)sin(x)+sin2(x)+cos2(x)
乘开 (sin(x)−cos(x))(cos(x)−sin(x)):2cos(x)sin(x)−sin2(x)−cos2(x)
(sin(x)−cos(x))(cos(x)−sin(x))
使用 FOIL 方法: (a+b)(c+d)=ac+ad+bc+bda=sin(x),b=−cos(x),c=cos(x),d=−sin(x)=sin(x)cos(x)+sin(x)(−sin(x))+(−cos(x))cos(x)+(−cos(x))(−sin(x))
使用加减运算法则+(−a)=−a,(−a)(−b)=ab=sin(x)cos(x)−sin(x)sin(x)−cos(x)cos(x)+cos(x)sin(x)
化简 sin(x)cos(x)−sin(x)sin(x)−cos(x)cos(x)+cos(x)sin(x):2cos(x)sin(x)−sin2(x)−cos2(x)
sin(x)cos(x)−sin(x)sin(x)−cos(x)cos(x)+cos(x)sin(x)
同类项相加:sin(x)cos(x)+cos(x)sin(x)=2cos(x)sin(x)=2cos(x)sin(x)−sin(x)sin(x)−cos(x)cos(x)
sin(x)sin(x)=sin2(x)
sin(x)sin(x)
使用指数法则: ab⋅ac=ab+csin(x)sin(x)=sin1+1(x)=sin1+1(x)
数字相加:1+1=2=sin2(x)
cos(x)cos(x)=cos2(x)
cos(x)cos(x)
使用指数法则: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=cos1+1(x)
数字相加:1+1=2=cos2(x)
=2cos(x)sin(x)−sin2(x)−cos2(x)
=2cos(x)sin(x)−sin2(x)−cos2(x)
=−(2cos(x)sin(x)−sin2(x)−cos2(x))
打开括号=−(2cos(x)sin(x))−(−sin2(x))−(−cos2(x))
使用加减运算法则−(−a)=a,−(a)=−a=−2cos(x)sin(x)+sin2(x)+cos2(x)
=sin2(x)+2sin(x)cos(x)+cos2(x)−2cos(x)sin(x)+sin2(x)+cos2(x)
化简 sin2(x)+2sin(x)cos(x)+cos2(x)−2cos(x)sin(x)+sin2(x)+cos2(x):2sin2(x)+2cos2(x)
sin2(x)+2sin(x)cos(x)+cos2(x)−2cos(x)sin(x)+sin2(x)+cos2(x)
同类项相加:2sin(x)cos(x)−2cos(x)sin(x)=0=sin2(x)+cos2(x)+sin2(x)+cos2(x)
同类项相加:cos2(x)+cos2(x)=2cos2(x)=sin2(x)+2cos2(x)+sin2(x)
同类项相加:sin2(x)+sin2(x)=2sin2(x)=2sin2(x)+2cos2(x)
=2sin2(x)+2cos2(x)
=(cos(x)−sin(x))(cos(x)+sin(x))2sin2(x)+2cos2(x)
(cos(x)−sin(x))(cos(x)+sin(x))2sin2(x)+2cos2(x)=3
(cos(x)−sin(x))(cos(x)+sin(x))2sin2(x)+2cos2(x)=3
两边减去 3(cos(x)−sin(x))(cos(x)+sin(x))2sin2(x)+2cos2(x)−3=0
化简 (cos(x)−sin(x))(cos(x)+sin(x))2sin2(x)+2cos2(x)−3:(cos(x)−sin(x))(cos(x)+sin(x))5sin2(x)−cos2(x)
(cos(x)−sin(x))(cos(x)+sin(x))2sin2(x)+2cos2(x)−3
将项转换为分式: 3=(cos(x)−sin(x))(cos(x)+sin(x))3(cos(x)−sin(x))(cos(x)+sin(x))=(cos(x)−sin(x))(cos(x)+sin(x))2sin2(x)+2cos2(x)−(cos(x)−sin(x))(cos(x)+sin(x))3(cos(x)−sin(x))(cos(x)+sin(x))
因为分母相等,所以合并分式: ca±cb=ca±b=(cos(x)−sin(x))(cos(x)+sin(x))2sin2(x)+2cos2(x)−3(cos(x)−sin(x))(cos(x)+sin(x))
乘开 2sin2(x)+2cos2(x)−3(cos(x)−sin(x))(cos(x)+sin(x)):5sin2(x)−cos2(x)
2sin2(x)+2cos2(x)−3(cos(x)−sin(x))(cos(x)+sin(x))
乘开 −3(cos(x)−sin(x))(cos(x)+sin(x)):−3cos2(x)+3sin2(x)
乘开 (cos(x)−sin(x))(cos(x)+sin(x)):cos2(x)−sin2(x)
(cos(x)−sin(x))(cos(x)+sin(x))
使用平方差公式: (a−b)(a+b)=a2−b2a=cos(x),b=sin(x)=cos2(x)−sin2(x)
=−3(cos2(x)−sin2(x))
乘开 −3(cos2(x)−sin2(x)):−3cos2(x)+3sin2(x)
−3(cos2(x)−sin2(x))
使用分配律: a(b−c)=ab−aca=−3,b=cos2(x),c=sin2(x)=−3cos2(x)−(−3)sin2(x)
使用加减运算法则−(−a)=a=−3cos2(x)+3sin2(x)
=−3cos2(x)+3sin2(x)
=2sin2(x)+2cos2(x)−3cos2(x)+3sin2(x)
化简 2sin2(x)+2cos2(x)−3cos2(x)+3sin2(x):5sin2(x)−cos2(x)
2sin2(x)+2cos2(x)−3cos2(x)+3sin2(x)
同类项相加:2cos2(x)−3cos2(x)=−cos2(x)=2sin2(x)−cos2(x)+3sin2(x)
同类项相加:2sin2(x)+3sin2(x)=5sin2(x)=5sin2(x)−cos2(x)
=5sin2(x)−cos2(x)
=(cos(x)−sin(x))(cos(x)+sin(x))5sin2(x)−cos2(x)
(cos(x)−sin(x))(cos(x)+sin(x))5sin2(x)−cos2(x)=0
g(x)f(x)=0⇒f(x)=05sin2(x)−cos2(x)=0
分解 5sin2(x)−cos2(x):(5sin(x)+cos(x))(5sin(x)−cos(x))
5sin2(x)−cos2(x)
将 5sin2(x)−cos2(x) 改写为 (5sin(x))2−cos2(x)
5sin2(x)−cos2(x)
使用根式运算法则: a=(a)25=(5)2=(5)2sin2(x)−cos2(x)
使用指数法则: ambm=(ab)m(5)2sin2(x)=(5sin(x))2=(5sin(x))2−cos2(x)
=(5sin(x))2−cos2(x)
使用平方差公式: x2−y2=(x+y)(x−y)(5sin(x))2−cos2(x)=(5sin(x)+cos(x))(5sin(x)−cos(x))=(5sin(x)+cos(x))(5sin(x)−cos(x))
(5sin(x)+cos(x))(5sin(x)−cos(x))=0
分别求解每个部分5sin(x)+cos(x)=0or5sin(x)−cos(x)=0
5sin(x)+cos(x)=0:x=arctan(−55)+πn
5sin(x)+cos(x)=0
使用三角恒等式改写
5sin(x)+cos(x)=0
在两边除以 cos(x),cos(x)=0cos(x)5sin(x)+cos(x)=cos(x)0
化简cos(x)5sin(x)+1=0
使用基本三角恒等式: cos(x)sin(x)=tan(x)5tan(x)+1=0
5tan(x)+1=0
将 1到右边
5tan(x)+1=0
两边减去 15tan(x)+1−1=0−1
化简5tan(x)=−1
5tan(x)=−1
两边除以 5
5tan(x)=−1
两边除以 555tan(x)=5−1
化简
55tan(x)=5−1
化简 55tan(x):tan(x)
55tan(x)
约分:5=tan(x)
化简 5−1:−55
5−1
使用分式法则: b−a=−ba=−51
−51有理化:−55
−51
乘以共轭根式 55=−551⋅5
1⋅5=5
55=5
55
使用根式运算法则: aa=a55=5=5
=−55
=−55
tan(x)=−55
tan(x)=−55
tan(x)=−55
使用反三角函数性质
tan(x)=−55
tan(x)=−55的通解tan(x)=−a⇒x=arctan(−a)+πnx=arctan(−55)+πn
x=arctan(−55)+πn
5sin(x)−cos(x)=0:x=arctan(55)+πn
5sin(x)−cos(x)=0
使用三角恒等式改写
5sin(x)−cos(x)=0
在两边除以 cos(x),cos(x)=0cos(x)5sin(x)−cos(x)=cos(x)0
化简cos(x)5sin(x)−1=0
使用基本三角恒等式: cos(x)sin(x)=tan(x)5tan(x)−1=0
5tan(x)−1=0
将 1到右边
5tan(x)−1=0
两边加上 15tan(x)−1+1=0+1
化简5tan(x)=1
5tan(x)=1
两边除以 5
5tan(x)=1
两边除以 555tan(x)=51
化简
55tan(x)=51
化简 55tan(x):tan(x)
55tan(x)
约分:5=tan(x)
化简 51:55
51
乘以共轭根式 55=551⋅5
1⋅5=5
55=5
55
使用根式运算法则: aa=a55=5=5
=55
tan(x)=55
tan(x)=55
tan(x)=55
使用反三角函数性质
tan(x)=55
tan(x)=55的通解tan(x)=a⇒x=arctan(a)+πnx=arctan(55)+πn
x=arctan(55)+πn
合并所有解x=arctan(−55)+πn,x=arctan(55)+πn
以小数形式表示解x=−0.42053…+πn,x=0.42053…+πn