解答
積分計算機導関数計算機代数計算機行列計算機もっと...
グラフ作成
折れ線グラフ指数グラフ二次グラフ正弦グラフもっと...
計算機能
BMI計算機複利計算機パーセンテージ計算機加速度計算機もっと...
幾何学
ピタゴラス定理計算機円面積計算機二等辺三角形計算機三角形計算機もっと...
AI Chat
ツール
ノートグループチートシートワークシート練習検証する
ja
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
人気のある 三角関数 >

solvefor x,sin(x+60)=cos(y-37)

  • 前代数
  • 代数
  • 前微積分
  • 微分積分
  • 関数
  • 線形代数
  • 三角関数
  • 統計
  • 化学
  • 経済学
  • 換算

解

解く x,sin(x+60∘)=cos(y−37∘)

解

x=−y+360∘n+67∘,x=y+180∘+360∘n−187∘
+1
ラジアン
x=−y+18067π​+2πn,x=y+π−180187π​+2πn
解答ステップ
sin(x+60∘)=cos(y−37∘)
三角関数の公式を使用して書き換える
cos(y−18037π​)
次の恒等を使用する: cos(x)=sin(90∘−x)sin(2π​−(y−18037π​))
sin(x+3π​)=sin(2π​−(y−18037π​))
三角関数の逆数プロパティを適用する
sin(x+3π​)=sin(2π​−(y−18037π​))
sin(x)=sin(y)⇒x=y+2πn,x=π−y+2πnx+3π​=2π​−(y−18037π​)+2πn,x+3π​=π−(2π​−(y−18037π​))+2πn
x+3π​=2π​−(y−18037π​)+2πn,x+3π​=π−(2π​−(y−18037π​))+2πn
x+60∘=90∘−(y−37∘)+360∘n:x=−y+360∘n+67∘
x+3π​=2π​−(y−18037π​)+2πn
60∘を右側に移動します
x+3π​=2π​−(y−18037π​)+2πn
両辺から60∘を引くx+3π​−3π​=2π​−(y−18037π​)+2πn−3π​
簡素化
x+3π​−3π​=2π​−(y−18037π​)+2πn−3π​
簡素化 x+60∘−60∘:x
x+60∘−60∘
類似した元を足す:60∘−60∘=0
=x
簡素化 90∘−(y−37∘)+360∘n−60∘:−y+360∘n+67∘
2π​−(y−18037π​)+2πn−3π​
以下の最小公倍数: 2,3:6
2,3
最小公倍数 (LCM)
以下の素因数分解: 2:2
2
2 は素数なので, 因数分解できない=2
以下の素因数分解: 3:3
3
3 は素数なので, 因数分解できない=3
2 または以下のいずれかで生じる最大回数, 各因数を乗じる:3=2⋅3
数を乗じる:2⋅3=6=6
LCMに基づいて分数を調整する
該当する分母を乗じてLCMに変えるために
必要な量で各分子を乗じる 6
90∘の場合:分母と分子に以下を乗じる: 390∘=2⋅3180∘3​=90∘
60∘の場合:分母と分子に以下を乗じる: 260∘=3⋅2180∘2​=60∘
=90∘−60∘
分母が等しいので, 分数を組み合わせる: ca​±cb​=ca±b​=6180∘3−180∘2​
類似した元を足す:540∘−360∘=180∘=−(y−18037π​)+2πn+6π​
−(y−37∘):−y+37∘
−(y−18037π​)
括弧を分配する=−y−(−18037π​)
マイナス・プラスの規則を適用する−(−a)=a,−(a)=−a=−y+18037π​
=−y+18037π​+2πn+6π​
簡素化 −y+37∘+360∘n+30∘:−y+360∘n+67∘
−y+18037π​+2πn+6π​
条件のようなグループ=−y+2πn+6π​+18037π​
以下の最小公倍数: 6,180:180
6,180
最小公倍数 (LCM)
以下の素因数分解: 6:2⋅3
6
626=3⋅2で割る =2⋅3
2,3 はすべて素数である。ゆえにさらに因数分解することはできない=2⋅3
以下の素因数分解: 180:2⋅2⋅3⋅3⋅5
180
1802180=90⋅2で割る =2⋅90
90290=45⋅2で割る =2⋅2⋅45
45345=15⋅3で割る =2⋅2⋅3⋅15
15315=5⋅3で割る =2⋅2⋅3⋅3⋅5
2,3,5 はすべて素数である。ゆえにさらに因数分解することはできない=2⋅2⋅3⋅3⋅5
6 または以下のいずれかで生じる最大回数, 各因数を乗じる:180=2⋅2⋅3⋅3⋅5
数を乗じる:2⋅2⋅3⋅3⋅5=180=180
LCMに基づいて分数を調整する
該当する分母を乗じてLCMに変えるために
必要な量で各分子を乗じる 180
30∘の場合:分母と分子に以下を乗じる: 3030∘=6⋅30180∘30​=30∘
=30∘+37∘
分母が等しいので, 分数を組み合わせる: ca​±cb​=ca±b​=180180∘30+6660∘​
類似した元を足す:5400∘+6660∘=12060∘=−y+2πn+18067π​
=−y+2πn+18067π​
x=−y+2πn+18067π​
x=−y+2πn+18067π​
x=−y+2πn+18067π​
x+60∘=180∘−(90∘−(y−37∘))+360∘n:x=y+180∘+360∘n−187∘
x+3π​=π−(2π​−(y−18037π​))+2πn
60∘を右側に移動します
x+3π​=π−(2π​−(y−18037π​))+2πn
両辺から60∘を引くx+3π​−3π​=π−(2π​−(y−18037π​))+2πn−3π​
簡素化
x+3π​−3π​=π−(2π​−(y−18037π​))+2πn−3π​
簡素化 x+60∘−60∘:x
x+60∘−60∘
類似した元を足す:60∘−60∘=0
=x
簡素化 180∘−(90∘−(y−37∘))+360∘n−60∘:y+180∘+360∘n−187∘
π−(2π​−(y−18037π​))+2πn−3π​
拡張 90∘−(y−37∘):−y+127∘
2π​−(y−18037π​)
−(y−37∘):−y+37∘
−(y−18037π​)
括弧を分配する=−y−(−18037π​)
マイナス・プラスの規則を適用する−(−a)=a,−(a)=−a=−y+18037π​
=2π​−y+18037π​
簡素化 90∘−y+37∘:−y+127∘
2π​−y+18037π​
条件のようなグループ=−y+2π​+18037π​
以下の最小公倍数: 2,180:180
2,180
最小公倍数 (LCM)
以下の素因数分解: 2:2
2
2 は素数なので, 因数分解できない=2
以下の素因数分解: 180:2⋅2⋅3⋅3⋅5
180
1802180=90⋅2で割る =2⋅90
90290=45⋅2で割る =2⋅2⋅45
45345=15⋅3で割る =2⋅2⋅3⋅15
15315=5⋅3で割る =2⋅2⋅3⋅3⋅5
2,3,5 はすべて素数である。ゆえにさらに因数分解することはできない=2⋅2⋅3⋅3⋅5
2 または以下のいずれかで生じる最大回数, 各因数を乗じる:180=2⋅2⋅3⋅3⋅5
数を乗じる:2⋅2⋅3⋅3⋅5=180=180
LCMに基づいて分数を調整する
該当する分母を乗じてLCMに変えるために
必要な量で各分子を乗じる 180
90∘の場合:分母と分子に以下を乗じる: 9090∘=2⋅90180∘90​=90∘
=90∘+37∘
分母が等しいので, 分数を組み合わせる: ca​±cb​=ca±b​=180180∘90+6660∘​
類似した元を足す:16200∘+6660∘=22860∘=−y+180127π​
=−y+180127π​
=π−(−y+180127π​)+2πn−3π​
−(−y+127∘):y−127∘
−(−y+180127π​)
括弧を分配する=−(−y)−180127π​
マイナス・プラスの規則を適用する−(−a)=a,−(a)=−a=y−180127π​
=π+y−180127π​+2πn−3π​
簡素化 180∘+y−127∘+360∘n−60∘:y+180∘+360∘n−187∘
π+y−180127π​+2πn−3π​
条件のようなグループ=y+π+2πn−3π​−180127π​
以下の最小公倍数: 3,180:180
3,180
最小公倍数 (LCM)
以下の素因数分解: 3:3
3
3 は素数なので, 因数分解できない=3
以下の素因数分解: 180:2⋅2⋅3⋅3⋅5
180
1802180=90⋅2で割る =2⋅90
90290=45⋅2で割る =2⋅2⋅45
45345=15⋅3で割る =2⋅2⋅3⋅15
15315=5⋅3で割る =2⋅2⋅3⋅3⋅5
2,3,5 はすべて素数である。ゆえにさらに因数分解することはできない=2⋅2⋅3⋅3⋅5
3 または以下のいずれかで生じる最大回数, 各因数を乗じる:180=3⋅3⋅2⋅2⋅5
数を乗じる:3⋅3⋅2⋅2⋅5=180=180
LCMに基づいて分数を調整する
該当する分母を乗じてLCMに変えるために
必要な量で各分子を乗じる 180
60∘の場合:分母と分子に以下を乗じる: 6060∘=3⋅60180∘60​=60∘
=−60∘−127∘
分母が等しいので, 分数を組み合わせる: ca​±cb​=ca±b​=180−180∘60−22860∘​
類似した元を足す:−10800∘−22860∘=−33660∘=180−33660∘​
分数の規則を適用する: b−a​=−ba​=y+π+2πn−180187π​
=y+π+2πn−180187π​
x=y+π+2πn−180187π​
x=y+π+2πn−180187π​
x=y+π+2πn−180187π​
x=−y+360∘n+67∘,x=y+180∘+360∘n−187∘

グラフ

Sorry, your browser does not support this application
インタラクティブなグラフを表示

人気の例

10cos(x)=010cos(x)=0(2cos(x)+1)(sqrt(3)tan(x)-1)=0(2cos(x)+1)(3​tan(x)−1)=0sin^2(x)-cos(x)tan(x)=0sin2(x)−cos(x)tan(x)=0sin(x+30)= 1/2sin(x+30∘)=21​sin(θ)=21sin(θ)=21
勉強ツールAI Math SolverAI Chatワークシート練習チートシート計算機能グラフ作成計算機ジオメトリーカルキュレーターソリューションの検証
アプリSymbolab アプリ (Android)グラフ作成計算機 (Android)練習 (Android)Symbolab アプリ (iOS)グラフ作成計算機 (iOS)練習 (iOS)Chrome拡張機能
会社Symbolabについてブログヘルプ
法務プライバシーService TermsCookieに関するポリシークッキー設定私の個人情報を販売または共有しないでください著作権, コミュニティガイドライン, DSA & その他の法務リソースLearneo法務センター
ソーシャルメディア
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024