Решения
Калькулятор Интегралов (Первообразной Функции)Калькулятор ПроизводныхАлгебраический КалькуляторКалькулятор МатрицДополнительные инструменты...
Графика
Линейный графикЭкспоненциальный графикКвадратичный графикГрафик синусаДополнительные инструменты...
Калькуляторы
Калькулятор ИМТКалькулятор сложных процентовКалькулятор процентовКалькулятор ускоренияДополнительные инструменты...
Геометрия
Калькулятор теоремы ПифагораКалькулятор Площади ОкружностиКалькулятор равнобедренного треугольникаКалькулятор треугольниковДополнительные инструменты...
AI Chat
Инструменты
БлокнотыГруппыШпаргалкиРабочие листыУпражнятьсяПодтвердить
ru
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Популярное Тригонометрия >

-5=-5+4sin(-2x+(3pi)/4)

  • Пре Алгебра
  • Алгебра
  • Пре Исчисление
  • Исчисление
  • Функции
  • Линейная алгебра
  • Тригонометрия
  • Статистика
  • Химия
  • Экономика
  • Преобразования

Решение

−5=−5+4sin(−2x+43π​)

Решение

x=−πn+83π​,x=−πn−2π​+83π​
+1
Градусы
x=67.5∘−180∘n,x=−22.5∘−180∘n
Шаги решения
−5=−5+4sin(−2x+43π​)
Поменяйте стороны−5+4sin(−2x+43π​)=−5
Добавьте 5 к обеим сторонам−5+4sin(−2x+43π​)+5=−5+5
После упрощения получаем4sin(−2x+43π​)=0
Разделите обе стороны на 4
4sin(−2x+43π​)=0
Разделите обе стороны на 444sin(−2x+43π​)​=40​
После упрощения получаемsin(−2x+43π​)=0
sin(−2x+43π​)=0
Общие решения для sin(−2x+43π​)=0
sin(x)таблица периодичности с циклом 2πn:
−2x+43π​=0+2πn,−2x+43π​=π+2πn
−2x+43π​=0+2πn,−2x+43π​=π+2πn
Решить −2x+43π​=0+2πn:x=−πn+83π​
−2x+43π​=0+2πn
0+2πn=2πn−2x+43π​=2πn
Переместите 43π​вправо
−2x+43π​=2πn
Вычтите 43π​ с обеих сторон−2x+43π​−43π​=2πn−43π​
После упрощения получаем−2x=2πn−43π​
−2x=2πn−43π​
Разделите обе стороны на −2
−2x=2πn−43π​
Разделите обе стороны на −2−2−2x​=−22πn​−−243π​​
После упрощения получаем
−2−2x​=−22πn​−−243π​​
Упростите −2−2x​:x
−2−2x​
Примените правило дробей: −b−a​=ba​=22x​
Разделите числа: 22​=1=x
Упростите −22πn​−−243π​​:−πn+83π​
−22πn​−−243π​​
−22πn​=−πn
−22πn​
Примените правило дробей: −ba​=−ba​=−22πn​
Разделите числа: 22​=1=−πn
=−πn−−243π​​
−243π​​=−83π​
−243π​​
Примените правило дробей: −ba​=−ba​=−243π​​
Примените правило дробей: acb​​=c⋅ab​243π​​=4⋅23π​=−4⋅23π​
Перемножьте числа: 4⋅2=8=−83π​
=−πn−(−83π​)
Примените правило −(−a)=a=−πn+83π​
x=−πn+83π​
x=−πn+83π​
x=−πn+83π​
Решить −2x+43π​=π+2πn:x=−πn−2π​+83π​
−2x+43π​=π+2πn
Переместите 43π​вправо
−2x+43π​=π+2πn
Вычтите 43π​ с обеих сторон−2x+43π​−43π​=π+2πn−43π​
После упрощения получаем−2x=π+2πn−43π​
−2x=π+2πn−43π​
Разделите обе стороны на −2
−2x=π+2πn−43π​
Разделите обе стороны на −2−2−2x​=−2π​+−22πn​−−243π​​
После упрощения получаем
−2−2x​=−2π​+−22πn​−−243π​​
Упростите −2−2x​:x
−2−2x​
Примените правило дробей: −b−a​=ba​=22x​
Разделите числа: 22​=1=x
Упростите −2π​+−22πn​−−243π​​:−πn−2π​+83π​
−2π​+−22πn​−−243π​​
Примените правило дробей: −ba​=−ba​=−2π​+−22πn​−−243π​​
−22πn​=−πn
−22πn​
Примените правило дробей: −ba​=−ba​=−22πn​
Разделите числа: 22​=1=−πn
=−2π​−πn−−243π​​
Сгруппируйте похожие слагаемые=−πn−2π​−−243π​​
−243π​​=−83π​
−243π​​
Примените правило дробей: −ba​=−ba​=−243π​​
Примените правило дробей: acb​​=c⋅ab​243π​​=4⋅23π​=−4⋅23π​
Перемножьте числа: 4⋅2=8=−83π​
=−πn−2π​−(−83π​)
Примените правило −(−a)=a=−πn−2π​+83π​
x=−πn−2π​+83π​
x=−πn−2π​+83π​
x=−πn−2π​+83π​
x=−πn+83π​,x=−πn−2π​+83π​

График

Sorry, your browser does not support this application
Просмотр интерактивного графика

Популярные примеры

3tan^2(x)-cos^2(x)=sin^2(x)3tan2(x)−cos2(x)=sin2(x)cos(θ)=(2pi)/3cos(θ)=32π​3(tan(θ)-2)=2tan(-7)3(tan(θ)−2)=2tan(−7)4cos^2(x)+7cos(x)=24cos2(x)+7cos(x)=2sin(x)-2cos(x)sin(x)=0sin(x)−2cos(x)sin(x)=0
Инструменты для обученияИИ Решатель ЗадачAI ChatРабочие листыУпражнятьсяШпаргалкиКалькуляторыГрафический калькуляторКалькулятор по ГеометрииПроверить решение
ПриложенияПриложение Symbolab (Android)Графический калькулятор (Android)Упражняться (Android)Приложение Symbolab (iOS)Графический калькулятор (iOS)Упражняться (iOS)Расширение для Chrome
КомпанияО SymbolabБлогПомощь
ЮридическийКонфиденциальностьService TermsПолитика использованияНастройки файлов cookieНе продавать и не передавать мои личные данныеАвторское право, Правила сообщества, Структуры данных и алгоритмы (DSA) & другие Юридические ресурсыЮридический центр Learneo
Соцсети
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024