솔루션
적분 계산기도함수 계산기대수 계산기행렬 계산기더...
그래프 작성
선 그래프지수 그래프이차 그래프사인 그래프더...
계산기
BMI 계산기복리 계산기백분율 계산기가속도 계산기더...
기하학
피타고라스 정리 계산기원 면적 계산기이등변삼각형 계산기삼각형 계산기더...
AI Chat
도구
메모무리치트 시트워크시트실행확인하다
ko
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
인기 있는 삼각법 >

solvefor x,13y=cos^4(1-2x)

  • 프리 대수학
  • 대수학
  • 미적분학
  • 미적분
  • 함수
  • 선형 대수학
  • 삼각법
  • 통계
  • 화학
  • 경제학
  • 변환

해법

을 위해 해결하다 x,13y=cos4(1−2x)

해법

x=−2arccos(13​y​​)​−πn+21​,x=2arccos(13​y​​)​−πn+21​,x=−2arccos(−13​y​​)​−πn+21​,x=2arccos(−13​y​​)​−πn+21​
솔루션 단계
13y=cos4(1−2x)
측면 전환cos4(1−2x)=13y
대체로 해결
cos4(1−2x)=13y
하게: cos(1−2x)=uu4=13y
u4=13y:u=13​y​​,u=−13​y​​,u=i13​y​​,u=−i13​y​​
u4=13y
다음으로 방정식 다시 쓰기 v=u2 그리고 v2=u4v2=13y
v2=13y해결 :v=13y​,v=−13y​
v2=13y
위해서 (g(x))2=f(a) 해결책은 g(x)=f(a)​,−f(a)​
v=13y​,v=−13y​
v=13y​,v=−13y​
다시 대체 v=u2,을 해결하다 u
u2=13y​해결 :u=13​y​​,u=−13​y​​
u2=13y​
급진적인 규칙 적용: nab​=na​nb​, 라면 a≥0,b≥0u2=13​y​
위해서 x2=f(a) 해결책은 x=f(a)​,−f(a)​
u=13​y​​,u=−13​y​​
u2=−13y​해결 :u=i13​y​​,u=−i13​y​​
u2=−13y​
급진적인 규칙 적용: nab​=na​nb​, 라면 a≥0,b≥0u2=−13​y​
위해서 x2=f(a) 해결책은 x=f(a)​,−f(a)​
u=−13​y​​,u=−−13​y​​
−13​y​​단순화하세요:i13​y​​
−13​y​​
급진적인 규칙 적용: −a​=−1​a​, 라면 a≥0−13​y​​=−1​13​y​​=−1​13​y​​
허수 규칙 적용: −1​=i=i13​y​​
−−13​y​​단순화하세요:−i13​y​​
−−13​y​​
−13​y​​단순화하세요:i13​y​​
−13​y​​
급진적인 규칙 적용: −a​=−1​a​, 라면 a≥0−13​y​​=−1​13​y​​=−1​13​y​​
허수 규칙 적용: −1​=i=i13​y​​
=−i13​y​​
u=i13​y​​,u=−i13​y​​
해결책은
u=13​y​​,u=−13​y​​,u=i13​y​​,u=−i13​y​​
뒤로 대체 u=cos(1−2x)cos(1−2x)=13​y​​,cos(1−2x)=−13​y​​,cos(1−2x)=i13​y​​,cos(1−2x)=−i13​y​​
cos(1−2x)=13​y​​,cos(1−2x)=−13​y​​,cos(1−2x)=i13​y​​,cos(1−2x)=−i13​y​​
cos(1−2x)=13​y​​:x=−2arccos(13​y​​)​−πn+21​,x=2arccos(13​y​​)​−πn+21​
cos(1−2x)=13​y​​
트리거 역속성 적용
cos(1−2x)=13​y​​
일반 솔루션 cos(1−2x)=13​y​​cos(x)=a⇒x=arccos(a)+2πn,x=−arccos(a)+2πn1−2x=arccos(13​y​​)+2πn,1−2x=−arccos(13​y​​)+2πn
1−2x=arccos(13​y​​)+2πn,1−2x=−arccos(13​y​​)+2πn
1−2x=arccos(13​y​​)+2πn해결 :x=−2arccos(13​y​​)​−πn+21​
1−2x=arccos(13​y​​)+2πn
1를 오른쪽으로 이동
1−2x=arccos(13​y​​)+2πn
빼다 1 양쪽에서1−2x−1=arccos(13​y​​)+2πn−1
단순화−2x=arccos(13​y​​)+2πn−1
−2x=arccos(13​y​​)+2πn−1
양쪽을 다음으로 나눕니다 −2
−2x=arccos(13​y​​)+2πn−1
양쪽을 다음으로 나눕니다 −2−2−2x​=−2arccos(13​y​​)​+−22πn​−−21​
단순화
−2−2x​=−2arccos(13​y​​)​+−22πn​−−21​
−2−2x​간소화하다 :x
−2−2x​
분수 규칙 적용: −b−a​=ba​=22x​
숫자를 나눕니다: 22​=1=x
−2arccos(13​y​​)​+−22πn​−−21​간소화하다 :−2arccos(13​y​​)​−πn+21​
−2arccos(13​y​​)​+−22πn​−−21​
분수 규칙 적용: −ba​=−ba​=−2arccos(13​y​​)​+−22πn​−−21​
−22πn​=−πn
−22πn​
분수 규칙 적용: −ba​=−ba​=−22πn​
숫자를 나눕니다: 22​=1=−πn
=−2arccos(13​y​​)​−πn−−21​
분수 규칙 적용: −ba​=−ba​=−2arccos(13​y​​)​−πn−(−21​)
규칙 적용 −(−a)=a=−2arccos(13​y​​)​−πn+21​
x=−2arccos(13​y​​)​−πn+21​
x=−2arccos(13​y​​)​−πn+21​
x=−2arccos(13​y​​)​−πn+21​
1−2x=−arccos(13​y​​)+2πn해결 :x=2arccos(13​y​​)​−πn+21​
1−2x=−arccos(13​y​​)+2πn
1를 오른쪽으로 이동
1−2x=−arccos(13​y​​)+2πn
빼다 1 양쪽에서1−2x−1=−arccos(13​y​​)+2πn−1
단순화−2x=−arccos(13​y​​)+2πn−1
−2x=−arccos(13​y​​)+2πn−1
양쪽을 다음으로 나눕니다 −2
−2x=−arccos(13​y​​)+2πn−1
양쪽을 다음으로 나눕니다 −2−2−2x​=−−2arccos(13​y​​)​+−22πn​−−21​
단순화
−2−2x​=−−2arccos(13​y​​)​+−22πn​−−21​
−2−2x​간소화하다 :x
−2−2x​
분수 규칙 적용: −b−a​=ba​=22x​
숫자를 나눕니다: 22​=1=x
−−2arccos(13​y​​)​+−22πn​−−21​간소화하다 :2arccos(13​y​​)​−πn+21​
−−2arccos(13​y​​)​+−22πn​−−21​
−2arccos(13​y​​)​=−2arccos(13​y​​)​
−2arccos(13​y​​)​
분수 규칙 적용: −ba​=−ba​=−2arccos(13​y​​)​
−22πn​=−πn
−22πn​
분수 규칙 적용: −ba​=−ba​=−22πn​
숫자를 나눕니다: 22​=1=−πn
=−​−2arccos(13​y​​)​​−πn−−21​
규칙 적용 −(−a)=a=2arccos(13​y​​)​−πn−−21​
분수 규칙 적용: −ba​=−ba​=2arccos(13​y​​)​−πn−(−21​)
규칙 적용 −(−a)=a=2arccos(13​y​​)​−πn+21​
x=2arccos(13​y​​)​−πn+21​
x=2arccos(13​y​​)​−πn+21​
x=2arccos(13​y​​)​−πn+21​
x=−2arccos(13​y​​)​−πn+21​,x=2arccos(13​y​​)​−πn+21​
cos(1−2x)=−13​y​​:x=−2arccos(−13​y​​)​−πn+21​,x=2arccos(−13​y​​)​−πn+21​
cos(1−2x)=−13​y​​
트리거 역속성 적용
cos(1−2x)=−13​y​​
일반 솔루션 cos(1−2x)=−13​y​​cos(x)=a⇒x=arccos(a)+2πn,x=−arccos(a)+2πn1−2x=arccos(−13​y​​)+2πn,1−2x=−arccos(−13​y​​)+2πn
1−2x=arccos(−13​y​​)+2πn,1−2x=−arccos(−13​y​​)+2πn
1−2x=arccos(−13​y​​)+2πn해결 :x=−2arccos(−13​y​​)​−πn+21​
1−2x=arccos(−13​y​​)+2πn
1를 오른쪽으로 이동
1−2x=arccos(−13​y​​)+2πn
빼다 1 양쪽에서1−2x−1=arccos(−13​y​​)+2πn−1
단순화−2x=arccos(−13​y​​)+2πn−1
−2x=arccos(−13​y​​)+2πn−1
양쪽을 다음으로 나눕니다 −2
−2x=arccos(−13​y​​)+2πn−1
양쪽을 다음으로 나눕니다 −2−2−2x​=−2arccos(−13​y​​)​+−22πn​−−21​
단순화
−2−2x​=−2arccos(−13​y​​)​+−22πn​−−21​
−2−2x​간소화하다 :x
−2−2x​
분수 규칙 적용: −b−a​=ba​=22x​
숫자를 나눕니다: 22​=1=x
−2arccos(−13​y​​)​+−22πn​−−21​간소화하다 :−2arccos(−13​y​​)​−πn+21​
−2arccos(−13​y​​)​+−22πn​−−21​
분수 규칙 적용: −ba​=−ba​=−2arccos(−13​y​​)​+−22πn​−−21​
−22πn​=−πn
−22πn​
분수 규칙 적용: −ba​=−ba​=−22πn​
숫자를 나눕니다: 22​=1=−πn
=−2arccos(−13​y​​)​−πn−−21​
분수 규칙 적용: −ba​=−ba​=−2arccos(−13​y​​)​−πn−(−21​)
규칙 적용 −(−a)=a=−2arccos(−13​y​​)​−πn+21​
x=−2arccos(−13​y​​)​−πn+21​
x=−2arccos(−13​y​​)​−πn+21​
x=−2arccos(−13​y​​)​−πn+21​
1−2x=−arccos(−13​y​​)+2πn해결 :x=2arccos(−13​y​​)​−πn+21​
1−2x=−arccos(−13​y​​)+2πn
1를 오른쪽으로 이동
1−2x=−arccos(−13​y​​)+2πn
빼다 1 양쪽에서1−2x−1=−arccos(−13​y​​)+2πn−1
단순화−2x=−arccos(−13​y​​)+2πn−1
−2x=−arccos(−13​y​​)+2πn−1
양쪽을 다음으로 나눕니다 −2
−2x=−arccos(−13​y​​)+2πn−1
양쪽을 다음으로 나눕니다 −2−2−2x​=−−2arccos(−13​y​​)​+−22πn​−−21​
단순화
−2−2x​=−−2arccos(−13​y​​)​+−22πn​−−21​
−2−2x​간소화하다 :x
−2−2x​
분수 규칙 적용: −b−a​=ba​=22x​
숫자를 나눕니다: 22​=1=x
−−2arccos(−13​y​​)​+−22πn​−−21​간소화하다 :2arccos(−13​y​​)​−πn+21​
−−2arccos(−13​y​​)​+−22πn​−−21​
−2arccos(−13​y​​)​=−2arccos(−13​y​​)​
−2arccos(−13​y​​)​
분수 규칙 적용: −ba​=−ba​=−2arccos(−13​y​​)​
−22πn​=−πn
−22πn​
분수 규칙 적용: −ba​=−ba​=−22πn​
숫자를 나눕니다: 22​=1=−πn
=−​−2arccos(−13​y​​)​​−πn−−21​
규칙 적용 −(−a)=a=2arccos(−13​y​​)​−πn−−21​
분수 규칙 적용: −ba​=−ba​=2arccos(−13​y​​)​−πn−(−21​)
규칙 적용 −(−a)=a=2arccos(−13​y​​)​−πn+21​
x=2arccos(−13​y​​)​−πn+21​
x=2arccos(−13​y​​)​−πn+21​
x=2arccos(−13​y​​)​−πn+21​
x=−2arccos(−13​y​​)​−πn+21​,x=2arccos(−13​y​​)​−πn+21​
cos(1−2x)=i13​y​​:해결책 없음
cos(1−2x)=i13​y​​
해결책없음
cos(1−2x)=−i13​y​​:해결책 없음
cos(1−2x)=−i13​y​​
해결책없음
모든 솔루션 결합x=−2arccos(13​y​​)​−πn+21​,x=2arccos(13​y​​)​−πn+21​,x=−2arccos(−13​y​​)​−πn+21​,x=2arccos(−13​y​​)​−πn+21​

그래프

Sorry, your browser does not support this application
대화형 그래프 보기

인기 있는 예

cos(x)+cos^2(x)+cos^3(x)=0cos(x)+cos2(x)+cos3(x)=0cos(x)-sin(x)= 1/((sin(x)))-1/((cos(x)))cos(x)−sin(x)=(sin(x))1​−(cos(x))1​sin^2(x)+cos^5(x)=2sin2(x)+cos5(x)=216=4+9-12cos(x)16=4+9−12cos(x)tanh(z)+2=0tanh(z)+2=0
학습 도구AI 수학 해결사AI Chat워크시트실행치트 시트계산기그래프 계산기지오메트리 계산기솔루션 확인
앱심볼랩 앱 (Android)그래프 계산기 (Android)실행 (Android)심볼랩 앱 (iOS)그래프 계산기 (iOS)실행 (iOS)크롬 확장 프로그램
회사Symbolab 소개블로그도와 주세요
합법적인사생활Service Terms쿠키 정책쿠키 설정내 개인 정보를 판매하거나 공유하지 마십시오저작권, 커뮤니티 지침, DSA 및 기타 법적 리소스Learneo 법률 센터
소셜 미디어
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024