Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
AI Chat
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2cos^3(x)=cot^3(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2cos3(x)=cot3(x)

Solution

x=2π​+2πn,x=23π​+2πn,x=0.91686…+2πn,x=π−0.91686…+2πn
+1
Degrees
x=90∘+360∘n,x=270∘+360∘n,x=52.53268…∘+360∘n,x=127.46731…∘+360∘n
Solution steps
2cos3(x)=cot3(x)
Subtract cot3(x) from both sides2cos3(x)−cot3(x)=0
Factor 2cos3(x)−cot3(x):(32​cos(x)−cot(x))(cot2(x)+32​cot(x)cos(x)+232​cos2(x))
2cos3(x)−cot3(x)
Rewrite 2cos3(x)−cot3(x) as (32​cos(x))3−cot3(x)
2cos3(x)−cot3(x)
Apply radical rule: a=(a​)22=(32​)3=(32​)3cos3(x)−cot3(x)
Apply exponent rule: ambm=(ab)m(32​)3cos3(x)=(32​cos(x))3=(32​cos(x))3−cot3(x)
=(32​cos(x))3−cot3(x)
Apply Difference of Cubes Formula: x3−y3=(x−y)(x2+xy+y2)(32​cos(x))3−cot3(x)=(32​cos(x)−cot(x))((32​)2cos2(x)+32​cot(x)cos(x)+cot2(x))=(32​cos(x)−cot(x))(cot2(x)+32​cot(x)cos(x)+(32​)2cos2(x))
Refine=(32​cos(x)−cot(x))(cot2(x)+32​cot(x)cos(x)+232​cos2(x))
(32​cos(x)−cot(x))(cot2(x)+32​cot(x)cos(x)+232​cos2(x))=0
Solving each part separately32​cos(x)−cot(x)=0orcot2(x)+32​cot(x)cos(x)+232​cos2(x)=0
32​cos(x)−cot(x)=0:x=2π​+2πn,x=23π​+2πn,x=arcsin(2232​​)+2πn,x=π−arcsin(2232​​)+2πn
32​cos(x)−cot(x)=0
Express with sin, cos
−cot(x)+cos(x)32​
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=−sin(x)cos(x)​+cos(x)32​
Simplify −sin(x)cos(x)​+cos(x)32​:sin(x)−cos(x)+32​cos(x)sin(x)​
−sin(x)cos(x)​+cos(x)32​
Convert element to fraction: 32​cos(x)=sin(x)cos(x)32​sin(x)​=−sin(x)cos(x)​+sin(x)cos(x)32​sin(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(x)−cos(x)+cos(x)32​sin(x)​
=sin(x)−cos(x)+32​cos(x)sin(x)​
sin(x)−cos(x)+cos(x)sin(x)32​​=0
g(x)f(x)​=0⇒f(x)=0−cos(x)+cos(x)sin(x)32​=0
Factor −cos(x)+cos(x)sin(x)32​:cos(x)(32​sin(x)−1)
−cos(x)+cos(x)sin(x)32​
Factor out common term cos(x)=cos(x)(−1+32​sin(x))
cos(x)(32​sin(x)−1)=0
Solving each part separatelycos(x)=0or32​sin(x)−1=0
cos(x)=0:x=2π​+2πn,x=23π​+2πn
cos(x)=0
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
32​sin(x)−1=0:x=arcsin(2232​​)+2πn,x=π−arcsin(2232​​)+2πn
32​sin(x)−1=0
Move 1to the right side
32​sin(x)−1=0
Add 1 to both sides32​sin(x)−1+1=0+1
Simplify32​sin(x)=1
32​sin(x)=1
Divide both sides by 32​
32​sin(x)=1
Divide both sides by 32​32​32​sin(x)​=32​1​
Simplify
32​32​sin(x)​=32​1​
Simplify 32​32​sin(x)​:sin(x)
32​32​sin(x)​
Cancel the common factor: 32​=sin(x)
Simplify 32​1​:2232​​
32​1​
Multiply by the conjugate 232​232​​=32​⋅232​1⋅232​​
1⋅232​=232​
32​⋅232​=2
32​⋅232​
Apply exponent rule: ab⋅ac=ab+c232​32​=232​⋅231​=232​+31​=232​+31​
Join 32​+31​:1
32​+31​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=32+1​
Add the numbers: 2+1=3=33​
Apply rule aa​=1=1
=21
Apply rule a1=a=2
=2232​​
sin(x)=2232​​
sin(x)=2232​​
sin(x)=2232​​
Apply trig inverse properties
sin(x)=2232​​
General solutions for sin(x)=2232​​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnx=arcsin(2232​​)+2πn,x=π−arcsin(2232​​)+2πn
x=arcsin(2232​​)+2πn,x=π−arcsin(2232​​)+2πn
Combine all the solutionsx=2π​+2πn,x=23π​+2πn,x=arcsin(2232​​)+2πn,x=π−arcsin(2232​​)+2πn
cot2(x)+32​cot(x)cos(x)+232​cos2(x)=0:x=2π​+2πn,x=23π​+2πn
cot2(x)+32​cot(x)cos(x)+232​cos2(x)=0
Express with sin, cos
cot2(x)+232​cos2(x)+cos(x)cot(x)32​
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=(sin(x)cos(x)​)2+232​cos2(x)+cos(x)sin(x)cos(x)​32​
Simplify (sin(x)cos(x)​)2+232​cos2(x)+cos(x)sin(x)cos(x)​32​:sin2(x)cos2(x)+232​cos2(x)sin2(x)+32​cos2(x)sin(x)​
(sin(x)cos(x)​)2+232​cos2(x)+cos(x)sin(x)cos(x)​32​
(sin(x)cos(x)​)2=sin2(x)cos2(x)​
(sin(x)cos(x)​)2
Apply exponent rule: (ba​)c=bcac​=sin2(x)cos2(x)​
cos(x)sin(x)cos(x)​32​=sin(x)32​cos2(x)​
cos(x)sin(x)cos(x)​32​
Multiply fractions: a⋅cb​=ca⋅b​=sin(x)cos(x)cos(x)32​​
cos(x)cos(x)32​=32​cos2(x)
cos(x)cos(x)32​
Apply exponent rule: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=cos1+1(x)32​
Add the numbers: 1+1=2=cos2(x)32​
=sin(x)32​cos2(x)​
=sin2(x)cos2(x)​+232​cos2(x)+sin(x)32​cos2(x)​
Convert element to fraction: 232​cos2(x)=1232​cos2(x)​=sin2(x)cos2(x)​+1232​cos2(x)​+sin(x)cos2(x)32​​
Least Common Multiplier of sin2(x),1,sin(x):sin2(x)
sin2(x),1,sin(x)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear in at least one of the factored expressions=sin2(x)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM sin2(x)
For 1232​cos2(x)​:multiply the denominator and numerator by sin2(x)1232​cos2(x)​=1⋅sin2(x)232​cos2(x)sin2(x)​=sin2(x)232​cos2(x)sin2(x)​
For sin(x)cos2(x)32​​:multiply the denominator and numerator by sin(x)sin(x)cos2(x)32​​=sin(x)sin(x)cos2(x)32​sin(x)​=sin2(x)cos2(x)32​sin(x)​
=sin2(x)cos2(x)​+sin2(x)232​cos2(x)sin2(x)​+sin2(x)cos2(x)32​sin(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin2(x)cos2(x)+232​cos2(x)sin2(x)+cos2(x)32​sin(x)​
=sin2(x)cos2(x)+232​cos2(x)sin2(x)+32​cos2(x)sin(x)​
sin2(x)cos2(x)+232​cos2(x)sin2(x)+cos2(x)sin(x)32​​=0
g(x)f(x)​=0⇒f(x)=0cos2(x)+232​cos2(x)sin2(x)+cos2(x)sin(x)32​=0
Factor cos2(x)+232​cos2(x)sin2(x)+cos2(x)sin(x)32​:cos2(x)(232​sin2(x)+32​sin(x)+1)
cos2(x)+232​cos2(x)sin2(x)+cos2(x)sin(x)32​
Factor out common term cos2(x)=cos2(x)(1+232​sin2(x)+32​sin(x))
cos2(x)(232​sin2(x)+32​sin(x)+1)=0
Solving each part separatelycos2(x)=0or232​sin2(x)+32​sin(x)+1=0
cos2(x)=0:x=2π​+2πn,x=23π​+2πn
cos2(x)=0
Apply rule xn=0⇒x=0
cos(x)=0
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
232​sin2(x)+32​sin(x)+1=0:No Solution
232​sin2(x)+32​sin(x)+1=0
Solve by substitution
232​sin2(x)+32​sin(x)+1=0
Let: sin(x)=u232​u2+32​u+1=0
232​u2+32​u+1=0:u=−4232​​+i432​3​232​​​,u=−4232​​−i432​3​232​​​
232​u2+32​u+1=0
Solve with the quadratic formula
232​u2+32​u+1=0
Quadratic Equation Formula:
For a=232​,b=32​,c=1u1,2​=2⋅232​−32​±(32​)2−4⋅232​⋅1​​
u1,2​=2⋅232​−32​±(32​)2−4⋅232​⋅1​​
Simplify (32​)2−4⋅232​⋅1​:3​i232​​
(32​)2−4⋅232​⋅1​
(32​)2=232​
(32​)2
Apply radical rule: na​=an1​=(231​)2
Apply exponent rule: (ab)c=abc=231​⋅2
31​⋅2=32​
31​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=31⋅2​
Multiply the numbers: 1⋅2=2=32​
=232​
4⋅232​⋅1=4⋅232​
4⋅232​⋅1
Multiply the numbers: 4⋅1=4=4⋅232​
=232​−4⋅232​​
Add similar elements: 232​−4⋅232​=−3⋅232​=−3⋅232​​
Apply radical rule: −a​=−1​a​−3⋅232​​=−1​3⋅232​​=−1​3⋅232​​
Apply imaginary number rule: −1​=i=i3⋅232​​
Apply radical rule: nab​=na​nb​, assuming a≥0,b≥03⋅232​​=3​232​​=3​i232​​
u1,2​=2⋅232​−32​±3​i232​​​
Separate the solutionsu1​=2⋅232​−32​+3​i232​​​,u2​=2⋅232​−32​−3​i232​​​
u=2⋅232​−32​+3​i232​​​:−4232​​+i432​3​232​​​
2⋅232​−32​+3​i232​​​
Multiply by the conjugate 32​32​​=2⋅232​32​(−32​+3​i232​​)32​​
Simplify (−32​+3​i232​​)32​:−232​+32​3​i232​​
(−32​+3​i232​​)32​
=32​(−32​+3​i232​​)
Apply the distributive law: a(b+c)=ab+aca=32​,b=−32​,c=3​i232​​=32​(−32​)+32​3​i232​​
Apply minus-plus rules+(−a)=−a=−32​32​+32​3​i232​​
32​32​=232​
32​32​
Apply exponent rule: ab⋅ac=ab+c32​32​=231​⋅231​=231​+31​=231​+31​
Add similar elements: 31​+31​=2⋅31​=22⋅31​
Multiply 2⋅31​:32​
2⋅31​
Multiply fractions: a⋅cb​=ca⋅b​=31⋅2​
Multiply the numbers: 1⋅2=2=32​
=232​
=−232​+32​3​i232​​
2⋅232​32​=4
2⋅232​32​
Apply exponent rule: ab⋅ac=ab+c2⋅232​32​=2⋅232​⋅231​=21+32​+31​=21+32​+31​
Join 1+32​+31​:2
1+32​+31​
Convert element to fraction: 1=11​=11​+32​+31​
Least Common Multiplier of 1,3,3:3
1,3,3
Least Common Multiplier (LCM)
Prime factorization of 1
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Compute a number comprised of factors that appear in at least one of the following:
1,3,3
=3
Multiply the numbers: 3=3=3
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 3
For 11​:multiply the denominator and numerator by 311​=1⋅31⋅3​=33​
=33​+32​+31​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=33+2+1​
Add the numbers: 3+2+1=6=36​
Divide the numbers: 36​=2=2
=22
22=4=4
=4−232​+32​3​i232​​​
Rewrite 4−232​+32​3​i232​​​ in standard complex form: −4232​​+43​32​232​​​i
4−232​+32​3​i232​​​
Apply the fraction rule: ca±b​=ca​±cb​4−232​+32​3​i232​​​=−4232​​+432​3​i232​​​=−4232​​+432​3​i232​​​
4232​​=232​1​
4232​​
Factor 4:22
Factor 4=22
=22232​​
Cancel 22232​​:234​1​
22232​​
Apply exponent rule: xbxa​=xb−a1​22232​​=22−32​1​=22−32​1​
Subtract the numbers: 2−32​=34​=234​1​
=234​1​
234​=232​
234​
234​=21+31​=21+31​
Apply exponent rule: xa+b=xaxb=21⋅231​
Refine=232​
=232​1​
432​3​i232​​​=2⋅232​3​i232​​​
432​3​i232​​​
Factor 4:22
Factor 4=22
=2232​3​i232​​​
Cancel 2232​3​i232​​​:235​3​i232​​​
2232​3​i232​​​
Apply radical rule: na​=an1​32​=231​=22231​3​i232​​​
Apply exponent rule: xbxa​=xb−a1​22231​​=22−31​1​=22−31​3​i232​​​
Subtract the numbers: 2−31​=35​=235​3​i232​​​
=235​3​i232​​​
235​=2⋅232​
235​
235​=21+32​=21+32​
Apply exponent rule: xa+b=xaxb=21⋅232​
Refine=2⋅232​
=2⋅232​3​i232​​​
=−232​1​+2⋅232​3​i232​​​
2⋅232​3​232​​​=43​32​232​​​
2⋅232​3​232​​​
Multiply by the conjugate 32​32​​=2⋅232​32​3​232​​32​​
2⋅232​32​=4
2⋅232​32​
Apply exponent rule: ab⋅ac=ab+c2⋅232​32​=2⋅232​⋅231​=21+32​+31​=21+32​+31​
Join 1+32​+31​:2
1+32​+31​
Convert element to fraction: 1=11​=11​+32​+31​
Least Common Multiplier of 1,3,3:3
1,3,3
Least Common Multiplier (LCM)
Prime factorization of 1
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Compute a number comprised of factors that appear in at least one of the following:
1,3,3
=3
Multiply the numbers: 3=3=3
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 3
For 11​:multiply the denominator and numerator by 311​=1⋅31⋅3​=33​
=33​+32​+31​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=33+2+1​
Add the numbers: 3+2+1=6=36​
Divide the numbers: 36​=2=2
=22
22=4=4
=43​32​232​​​
=−232​1​+43​32​232​​​i
−232​1​=−4232​​
−232​1​
Multiply by the conjugate 232​232​​=−232​⋅232​1⋅232​​
1⋅232​=232​
232​⋅232​=4
232​⋅232​
Apply exponent rule: ab⋅ac=ab+c2⋅232​32​=2⋅232​⋅231​=21+32​+31​=21+32​+31​
Join 1+32​+31​:2
1+32​+31​
Convert element to fraction: 1=11​=11​+32​+31​
Least Common Multiplier of 1,3,3:3
1,3,3
Least Common Multiplier (LCM)
Prime factorization of 1
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Compute a number comprised of factors that appear in at least one of the following:
1,3,3
=3
Multiply the numbers: 3=3=3
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 3
For 11​:multiply the denominator and numerator by 311​=1⋅31⋅3​=33​
=33​+32​+31​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=33+2+1​
Add the numbers: 3+2+1=6=36​
Divide the numbers: 36​=2=2
=22
22=4=4
=−4232​​
=−4232​​+43​32​232​​​i
=−4232​​+43​32​232​​​i
u=2⋅232​−32​−3​i232​​​:−4232​​−i432​3​232​​​
2⋅232​−32​−3​i232​​​
Multiply by the conjugate 32​32​​=2⋅232​32​(−32​−3​i232​​)32​​
Simplify (−32​−3​i232​​)32​:−232​−32​3​i232​​
(−32​−3​i232​​)32​
=32​(−32​−3​i232​​)
Apply the distributive law: a(b−c)=ab−aca=32​,b=−32​,c=3​i232​​=32​(−32​)−32​3​i232​​
Apply minus-plus rules+(−a)=−a=−32​32​−32​3​i232​​
32​32​=232​
32​32​
Apply exponent rule: ab⋅ac=ab+c32​32​=231​⋅231​=231​+31​=231​+31​
Add similar elements: 31​+31​=2⋅31​=22⋅31​
Multiply 2⋅31​:32​
2⋅31​
Multiply fractions: a⋅cb​=ca⋅b​=31⋅2​
Multiply the numbers: 1⋅2=2=32​
=232​
=−232​−32​3​i232​​
2⋅232​32​=4
2⋅232​32​
Apply exponent rule: ab⋅ac=ab+c2⋅232​32​=2⋅232​⋅231​=21+32​+31​=21+32​+31​
Join 1+32​+31​:2
1+32​+31​
Convert element to fraction: 1=11​=11​+32​+31​
Least Common Multiplier of 1,3,3:3
1,3,3
Least Common Multiplier (LCM)
Prime factorization of 1
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Compute a number comprised of factors that appear in at least one of the following:
1,3,3
=3
Multiply the numbers: 3=3=3
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 3
For 11​:multiply the denominator and numerator by 311​=1⋅31⋅3​=33​
=33​+32​+31​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=33+2+1​
Add the numbers: 3+2+1=6=36​
Divide the numbers: 36​=2=2
=22
22=4=4
=4−232​−32​3​i232​​​
Rewrite 4−232​−32​3​i232​​​ in standard complex form: −4232​​−43​32​232​​​i
4−232​−32​3​i232​​​
Apply the fraction rule: ca±b​=ca​±cb​4−232​−32​3​i232​​​=−4232​​−432​3​i232​​​=−4232​​−432​3​i232​​​
4232​​=232​1​
4232​​
Factor 4:22
Factor 4=22
=22232​​
Cancel 22232​​:234​1​
22232​​
Apply exponent rule: xbxa​=xb−a1​22232​​=22−32​1​=22−32​1​
Subtract the numbers: 2−32​=34​=234​1​
=234​1​
234​=232​
234​
234​=21+31​=21+31​
Apply exponent rule: xa+b=xaxb=21⋅231​
Refine=232​
=232​1​
432​3​i232​​​=2⋅232​3​i232​​​
432​3​i232​​​
Factor 4:22
Factor 4=22
=2232​3​i232​​​
Cancel 2232​3​i232​​​:235​3​i232​​​
2232​3​i232​​​
Apply radical rule: na​=an1​32​=231​=22231​3​i232​​​
Apply exponent rule: xbxa​=xb−a1​22231​​=22−31​1​=22−31​3​i232​​​
Subtract the numbers: 2−31​=35​=235​3​i232​​​
=235​3​i232​​​
235​=2⋅232​
235​
235​=21+32​=21+32​
Apply exponent rule: xa+b=xaxb=21⋅232​
Refine=2⋅232​
=2⋅232​3​i232​​​
=−232​1​−2⋅232​3​i232​​​
−2⋅232​3​232​​​=−43​32​232​​​
−2⋅232​3​232​​​
Multiply by the conjugate 32​32​​=−2⋅232​32​3​232​​32​​
2⋅232​32​=4
2⋅232​32​
Apply exponent rule: ab⋅ac=ab+c2⋅232​32​=2⋅232​⋅231​=21+32​+31​=21+32​+31​
Join 1+32​+31​:2
1+32​+31​
Convert element to fraction: 1=11​=11​+32​+31​
Least Common Multiplier of 1,3,3:3
1,3,3
Least Common Multiplier (LCM)
Prime factorization of 1
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Compute a number comprised of factors that appear in at least one of the following:
1,3,3
=3
Multiply the numbers: 3=3=3
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 3
For 11​:multiply the denominator and numerator by 311​=1⋅31⋅3​=33​
=33​+32​+31​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=33+2+1​
Add the numbers: 3+2+1=6=36​
Divide the numbers: 36​=2=2
=22
22=4=4
=−43​32​232​​​
=−232​1​−43​32​232​​​i
−232​1​=−4232​​
−232​1​
Multiply by the conjugate 232​232​​=−232​⋅232​1⋅232​​
1⋅232​=232​
232​⋅232​=4
232​⋅232​
Apply exponent rule: ab⋅ac=ab+c2⋅232​32​=2⋅232​⋅231​=21+32​+31​=21+32​+31​
Join 1+32​+31​:2
1+32​+31​
Convert element to fraction: 1=11​=11​+32​+31​
Least Common Multiplier of 1,3,3:3
1,3,3
Least Common Multiplier (LCM)
Prime factorization of 1
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Compute a number comprised of factors that appear in at least one of the following:
1,3,3
=3
Multiply the numbers: 3=3=3
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 3
For 11​:multiply the denominator and numerator by 311​=1⋅31⋅3​=33​
=33​+32​+31​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=33+2+1​
Add the numbers: 3+2+1=6=36​
Divide the numbers: 36​=2=2
=22
22=4=4
=−4232​​
=−4232​​−43​32​232​​​i
=−4232​​−43​32​232​​​i
The solutions to the quadratic equation are:u=−4232​​+i432​3​232​​​,u=−4232​​−i432​3​232​​​
Substitute back u=sin(x)sin(x)=−4232​​+i432​3​232​​​,sin(x)=−4232​​−i432​3​232​​​
sin(x)=−4232​​+i432​3​232​​​,sin(x)=−4232​​−i432​3​232​​​
sin(x)=−4232​​+i432​3​232​​​:No Solution
sin(x)=−4232​​+i432​3​232​​​
NoSolution
sin(x)=−4232​​−i432​3​232​​​:No Solution
sin(x)=−4232​​−i432​3​232​​​
NoSolution
Combine all the solutionsNoSolution
Combine all the solutionsx=2π​+2πn,x=23π​+2πn
Combine all the solutionsx=2π​+2πn,x=23π​+2πn,x=arcsin(2232​​)+2πn,x=π−arcsin(2232​​)+2πn
Show solutions in decimal formx=2π​+2πn,x=23π​+2πn,x=0.91686…+2πn,x=π−0.91686…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

1/((sec^2(a)))+1/((cos^2(a)))=1(sec2(a))1​+(cos2(a))1​=1(1-cos(a))(1+cos(a))=tan(a)sin(a)(1−cos(a))(1+cos(a))=tan(a)sin(a)tan^2(x)+1/6+(tan(1))/3 =0tan2(x)+61​+3tan(1)​=0-2cos^2(x)-5sin(x)+5=0−2cos2(x)−5sin(x)+5=03-4sin^3(x)=sin^3(x)3−4sin3(x)=sin3(x)
Study ToolsAI Math SolverAI ChatPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome Extension
CompanyAbout SymbolabBlogHelp
LegalPrivacyService TermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024