Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
AI Chat
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Trigonometrie >

cos(337.5)

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

cos(337.5∘)

Lösung

22+2​​​
+1
Dezimale
0.92387…
Schritte zur Lösung
cos(337.5∘)
Umschreiben mit Hilfe von Trigonometrie-Identitäten:21+cos(315∘)​​
cos(337.5∘)
Schreibe cos(337.5∘)als cos(2675∘​)=cos(2675∘​)
Verwende die Halbwinkel Identität:cos(2θ​)=21+cos(θ)​​
Verwende die Doppelwinkelidentitätcos(2θ)=2cos2(θ)−1
Ersetze θ mit 2θ​cos(θ)=2cos2(2θ​)−1
Tausche die Seiten2cos2(2θ​)=1+cos(θ)
Teile beide Seiten durch 2cos2(2θ​)=2(1+cos(θ))​
Square root both sides
Choose the root sign according to the quadrant of 2θ​:
range[0,90∘][90∘,180∘][180∘,270∘][270∘,360∘]​quadrantIIIIIIIV​sinpositivepositivenegativenegative​cospositivenegativenegativepositive​​
cos(2θ​)=2(1+cos(θ))​​
=21+cos(675∘)​​
cos(675∘)=cos(315∘)
cos(675∘)
Schreibe 675∘um: 360∘+315∘=cos(360∘+315∘)
Verwende die Periodizität von cos: cos(x+360∘)=cos(x)cos(360∘+315∘)=cos(315∘)=cos(315∘)
=21+cos(315∘)​​
=21+cos(315∘)​​
Umschreiben mit Hilfe von Trigonometrie-Identitäten:cos(315∘)=22​​
cos(315∘)
Umschreiben mit Hilfe von Trigonometrie-Identitäten:cos(180∘)cos(135∘)−sin(180∘)sin(135∘)
cos(315∘)
Schreibe cos(315∘)als cos(180∘+135∘)=cos(180∘+135∘)
Benutze die Identität der Winkelsumme: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(180∘)cos(135∘)−sin(180∘)sin(135∘)
=cos(180∘)cos(135∘)−sin(180∘)sin(135∘)
Verwende die folgende triviale Identität:cos(180∘)=(−1)
cos(180∘)
cos(x) Periodizitätstabelle mit 360∘n Zyklus:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=(−1)
Verwende die folgende triviale Identität:cos(135∘)=−22​​
cos(135∘)
cos(x) Periodizitätstabelle mit 360∘n Zyklus:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=−22​​
Verwende die folgende triviale Identität:sin(180∘)=0
sin(180∘)
sin(x) Periodizitätstabelle mit 360∘n Zyklus:
=0
Verwende die folgende triviale Identität:sin(135∘)=22​​
sin(135∘)
sin(x) Periodizitätstabelle mit 360∘n Zyklus:
=22​​
=(−1)(−22​​)−0⋅22​​
Vereinfache=22​​
=21+22​​​​
Vereinfache 21+22​​​​:22+2​​​
21+22​​​​
21+22​​​=42+2​​
21+22​​​
Füge 1+22​​zusammen:22+2​​
1+22​​
Wandle das Element in einen Bruch um: 1=21⋅2​=21⋅2​+22​​
Da die Nenner gleich sind, fasse die Brüche zusammen.: ca​±cb​=ca±b​=21⋅2+2​​
Multipliziere die Zahlen: 1⋅2=2=22+2​​
=222+2​​​
Wende Bruchregel an: acb​​=c⋅ab​=2⋅22+2​​
Multipliziere die Zahlen: 2⋅2=4=42+2​​
=42+2​​​
Wende Radikal Regel an: nba​​=nb​na​​, angenommen a≥0,b≥0=4​2+2​​​
4​=2
4​
Faktorisiere die Zahl: 4=22=22​
Wende Radikal Regel an: nan​=a22​=2=2
=22+2​​​
=22+2​​​

Beliebte Beispiele

(sin(8))/(1+cos(8))1+cos(8∘)sin(8∘)​arcsin(9/41)arcsin(419​)(tan(76)-tan(46))/(1+tan(76)tan(46))1+tan(76∘)tan(46∘)tan(76∘)−tan(46∘)​tan(115)tan(115∘)cos((4pi)/(12))cos(124π​)
LernwerkzeugeKI-Mathe-LöserAI ChatArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-Erweiterung
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenService TermsCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024