Solution
prove
Solution
Solution steps
Manipulating left side
Rewrite using trig identities
Use the following identity:
Rewrite using trig identities
Rewrite as
Use the Angle Sum identity:
Use the Double Angle identity:
Simplify
Apply exponent rule:
Add the numbers:
Use the Double Angle identity:
Use the Pythagorean identity:
Expand
Expand
Apply the distributive law:
Simplify
Apply exponent rule:
Add the numbers:
Multiply:
Expand
Apply the distributive law:
Apply minus-plus rules
Simplify
Multiply the numbers:
Apply exponent rule:
Add the numbers:
Simplify
Group like terms
Add similar elements:
Add similar elements:
Factor
Apply exponent rule:
Factor out common term
Rewrite using trig identities
Use the Pythagorean identity:
Expand
Expand
Apply the distributive law:
Multiply the numbers:
Add/Subtract the numbers:
Use the Pythagorean identity:
Add similar elements:
We showed that the two sides could take the same form
Popular Examples
prove (sec(x)-1)(sec(x)+1)*cot^2(x)=1prove prove csc(x)sin(pi/2-x)=cot(x)prove prove tan^2(x)+tan(x)cot(x)=sec^2(x)prove prove cos(4θ)=2(cos(2θ))^2-1prove prove tan(2x)=(2sin(x)cos(x))/(2cos^2(x)-1)prove
Frequently Asked Questions (FAQ)
Is cos(3x)=cos(x)(cos^2(x)-3sin^2(x)) ?
The answer to whether cos(3x)=cos(x)(cos^2(x)-3sin^2(x)) is True