Solution
Solution
+1
Decimal
Solution steps
Let:
Factor
Break the expression into groups
Definition
Factors of
Divisors (Factors)
Find the Prime factors of
is a prime number, therefore no factorization is possible
Add 1
The factors of
Negative factors of
Multiply the factors by to get the negative factors
For every two factors such that check if
Check TrueCheck False
Group into
Factor out from
Apply exponent rule:
Factor out common term
Factor out from
Factor out common term
Factor out common term
Identify the intervals
Find the signs of the factors of
Find the signs of
Move to the right side
Subtract from both sides
Simplify
Move to the right side
Subtract from both sides
Simplify
Move to the right side
Subtract from both sides
Simplify
Find the signs of
Move to the right side
Add to both sides
Simplify
Move to the right side
Add to both sides
Simplify
Move to the right side
Add to both sides
Simplify
Summarize in a table:
Identify the intervals that satisfy the required condition:
Merge Overlapping Intervals
The union of two intervals is the set of numbers which are in either interval
or
The union of two intervals is the set of numbers which are in either interval
or
The union of two intervals is the set of numbers which are in either interval
or
Substitute back
For , if then
Simplify
Use the following trivial identity:
Simplify
Use the following trivial identity:
Add similar elements:
Simplify
False for all
Range of
Function range definition
The range of the basic function is
False
Let
Combine the intervals
Merge Overlapping Intervals
The intersection of two intervals is the set of numbers which are in both intervals
and
Combine the intervals
Merge Overlapping Intervals