Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Trigonometry Problems
sin(x)>= 1/2 ,0<= x<= 2pi
\sin(x)\ge\:\frac{1}{2},0\le\:x\le\:2π
2cos(x)+2>= 2
2\cos(x)+2\ge\:2
(2*cos(x)-3)/(sin(x))>= 0
\frac{2\cdot\:\cos(x)-3}{\sin(x)}\ge\:0
cos^3(x^2)-3>0
\cos^{3}(x^{2})-3>0
sin(4x)>cos(2x)
\sin(4x)>\cos(2x)
cos(2x)>= 1/2
\cos(2x)\ge\:\frac{1}{2}
1/(sin(2x))< 1/(sin(x))
\frac{1}{\sin(2x)}<\frac{1}{\sin(x)}
1-4sin^2(x)>0
1-4\sin^{2}(x)>0
tan(x)>=-sqrt(3)
\tan(x)\ge\:-\sqrt{3}
cos(θ)>0,sin(θ)<0
\cos(θ)>0,\sin(θ)<0
tan(x)> 1/(sqrt(3))
\tan(x)>\frac{1}{\sqrt{3}}
tan(2x)>1
\tan(2x)>1
sin^2(x)>-1
\sin^{2}(x)>-1
tan(pi-2x)>= sqrt(3)
\tan(π-2x)\ge\:\sqrt{3}
solvefor x,cos(x)<= 1
solvefor\:x,\cos(x)\le\:1
cos(x)+cos(2x)>0
\cos(x)+\cos(2x)>0
solvefor x,sin(x)=-1/2-pi<= x<= pi
solvefor\:x,\sin(x)=-\frac{1}{2}-π\le\:x\le\:π
0.86<= cos^{2(10)}((68)/n)
0.86\le\:\cos^{2(10)}(\frac{68}{n})
pi/2 cos((pi*x)/2)>0
\frac{π}{2}\cos(\frac{π\cdot\:x}{2})>0
cos(x)>(((1))/((2)))
\cos(x)>(\frac{(1)}{(2)})
-1<tan(x)<1
-1<\tan(x)<1
0<cos(θ)<= sqrt(3)sin(θ)
0<\cos(θ)\le\:\sqrt{3}\sin(θ)
sin(t)<0\land cos(t)<0
\sin(t)<0\land\:\cos(t)<0
csc(x)=-2sqrt(5)\land cos(x)<0,cot(2x)
\csc(x)=-2\sqrt{5}\land\:\cos(x)<0,\cot(2x)
-1<= sin(x)<= 1
-1\le\:\sin(x)\le\:1
sin(θ)= 7/25 \land cos(θ)>0
\sin(θ)=\frac{7}{25}\land\:\cos(θ)>0
sin(x)=-4/5 \land cos(x)<0,cos(x/2)
\sin(x)=-\frac{4}{5}\land\:\cos(x)<0,\cos(\frac{x}{2})
0<sin(x)< 1/2
0<\sin(x)<\frac{1}{2}
1/2 <sin(θ)<(sqrt(2))/2
\frac{1}{2}<\sin(θ)<\frac{\sqrt{2}}{2}
sin(θ)= 2/3 \land tan(θ)>0
\sin(θ)=\frac{2}{3}\land\:\tan(θ)>0
cos(θ)<0\land tan(θ)>0
\cos(θ)<0\land\:\tan(θ)>0
cosh(θ)= 29/8 \land θ<0,sinh(θ)
\cosh(θ)=\frac{29}{8}\land\:θ<0,\sinh(θ)
0<arcsin(y)<pi
0<\arcsin(y)<π
-1<= cos(x)<= 1
-1\le\:\cos(x)\le\:1
-pi/2 <arctan(y)<0
-\frac{π}{2}<\arctan(y)<0
sin(θ)=(sqrt(3))/2 \land tan(θ)<0
\sin(θ)=\frac{\sqrt{3}}{2}\land\:\tan(θ)<0
sin(x)0<x<pi
\sin(x)0<x<π
0<= sin(x)<= 1
0\le\:\sin(x)\le\:1
-pi/2 <arcsin(y)< pi/2
-\frac{π}{2}<\arcsin(y)<\frac{π}{2}
sin(θ)=-1/2 \land cos(θ)>0
\sin(θ)=-\frac{1}{2}\land\:\cos(θ)>0
-1/2 <sin(x)< 1/2
-\frac{1}{2}<\sin(x)<\frac{1}{2}
sin(θ)>0\land sec(θ)<0
\sin(θ)>0\land\:\sec(θ)<0
0<= arctan(x)<= 1
0\le\:\arctan(x)\le\:1
tan(θ)>0\land sin(θ)<0
\tan(θ)>0\land\:\sin(θ)<0
sin(θ)<0\land cos(θ)>0
\sin(θ)<0\land\:\cos(θ)>0
cot(θ)=-1/3 \land cos(θ)>0,sec(θ)
\cot(θ)=-\frac{1}{3}\land\:\cos(θ)>0,\sec(θ)
tan(θ)=-4/5 \land cos(θ)>0,csc(θ)
\tan(θ)=-\frac{4}{5}\land\:\cos(θ)>0,\csc(θ)
-1/2 <cos(x)< 1/2
-\frac{1}{2}<\cos(x)<\frac{1}{2}
sin(θ)>0\land cos(θ)<0
\sin(θ)>0\land\:\cos(θ)<0
sin(θ)<0\land (csc(θ))(cos(θ))>0
\sin(θ)<0\land\:(\csc(θ))(\cos(θ))>0
cosh(θ)= 12/7 \land θ<0,sinh(θ)
\cosh(θ)=\frac{12}{7}\land\:θ<0,\sinh(θ)
0<= sin^2(x)<= 1
0\le\:\sin^{2}(x)\le\:1
cos(θ)=45\land 0<θ<90,sec(θ)
\cos(θ)=45\land\:0^{\circ\:}<θ<90^{\circ\:},\sec(θ)
sin(θ)<0\land cot(θ)<0
\sin(θ)<0\land\:\cot(θ)<0
5<= 20cos(pi/(20)(x-20))+23<= 20
5\le\:20\cos(\frac{π}{20}(x-20))+23\le\:20
tan(θ)=-1\land sin(θ)>0
\tan(θ)=-1\land\:\sin(θ)>0
sin(x/2-pi/3)0<= x<= 2pi
\sin(\frac{x}{2}-\frac{π}{3})0\le\:x\le\:2π
cos(θ)= 1/4 \land 0>θ>90,tan(θ)
\cos(θ)=\frac{1}{4}\land\:0^{\circ\:}>θ>90^{\circ\:},\tan(θ)
cot(θ)=-sqrt(2)\land cos(θ)>0
\cot(θ)=-\sqrt{2}\land\:\cos(θ)>0
csc(θ)>0\land cot(θ)>0
\csc(θ)>0\land\:\cot(θ)>0
sin(pi*x)0<x<1
\sin(π\cdot\:x)0<x<1
-(sqrt(2))/2 <sin(x)<(sqrt(2))/2
-\frac{\sqrt{2}}{2}<\sin(x)<\frac{\sqrt{2}}{2}
-sqrt(2)<= sin(θ)+cos(θ)<= sqrt(2)
-\sqrt{2}\le\:\sin(θ)+\cos(θ)\le\:\sqrt{2}
cos(θ)= 13/5 \land 180<θ<270,tan(2θ)
\cos(θ)=\frac{13}{5}\land\:180<θ<270,\tan(2θ)
sin(θ)=-1/3 \land tan(θ)>0
\sin(θ)=-\frac{1}{3}\land\:\tan(θ)>0
tan(θ)= 1/3 \land sin(θ)>0
\tan(θ)=\frac{1}{3}\land\:\sin(θ)>0
cot(θ)>0\land cos(θ)>0
\cot(θ)>0\land\:\cos(θ)>0
sin(t)=-7/8 \land sec(t)<0
\sin(t)=-\frac{7}{8}\land\:\sec(t)<0
csc(θ)>0\land sec(θ)<0
\csc(θ)>0\land\:\sec(θ)<0
tan(θ)<0\land cos(θ)>0
\tan(θ)<0\land\:\cos(θ)>0
sec(θ)= 4/3 \land cot(θ)<0
\sec(θ)=\frac{4}{3}\land\:\cot(θ)<0
0<cos(x)<sin(x)
0<\cos(x)<\sin(x)
1/2 <sin(θ)<(sqrt(3))/2
\frac{1}{2}<\sin(θ)<\frac{\sqrt{3}}{2}
(x^2)/(sqrt(2))-sin^2(x)in^0<x<2pi
\frac{x^{2}}{\sqrt{2}}-\sin^{2}(x)in^{0}<x<2π
tan(θ)=-4/5 \land cos(θ)>0
\tan(θ)=-\frac{4}{5}\land\:\cos(θ)>0
csc(θ)<0\land cos(θ)<0
\csc(θ)<0\land\:\cos(θ)<0
cos(θ)= 2/5 \land tan(θ)<0
\cos(θ)=\frac{2}{5}\land\:\tan(θ)<0
0>= 1/(sin^2(x))>= 1
0\ge\:\frac{1}{\sin^{2}(x)}\ge\:1
(1-sin(x))0<x< pi/2
(1-\sin(x))0<x<\frac{π}{2}
sin(θ)=-1/8 \land sec(θ)<0
\sin(θ)=-\frac{1}{8}\land\:\sec(θ)<0
(sin(2x))/(cos(x))0<= x<= pi
\frac{\sin(2x)}{\cos(x)}0\le\:x\le\:π
cos(x)= 3/5 \land sin(x)<0,sin(2x)
\cos(x)=\frac{3}{5}\land\:\sin(x)<0,\sin(2x)
csc(θ)=-5/4 \land cos(θ)>0
\csc(θ)=-\frac{5}{4}\land\:\cos(θ)>0
sin(θ)<0\land tan(θ)<0
\sin(θ)<0\land\:\tan(θ)<0
sin(t)0<= t<pi
\sin(t)0\le\:t<π
csc(θ)=4\land cot(θ)<0
\csc(θ)=4\land\:\cot(θ)<0
-(sqrt(2))/2 <sin(x/2)<(sqrt(2))/2
-\frac{\sqrt{2}}{2}<\sin(\frac{x}{2})<\frac{\sqrt{2}}{2}
-sqrt(3)<= tan(x)<= ((sqrt(3)))/3
-\sqrt{3}\le\:\tan(x)\le\:\frac{(\sqrt{3})}{3}
0<cos(θ)<1
0<\cos(θ)<1
tan(θ)=-12/5 \land sin(θ)>0
\tan(θ)=-\frac{12}{5}\land\:\sin(θ)>0
-1<= arccos(x^2)<= 1
-1\le\:\arccos(x^{2})\le\:1
1-cos(θ)0<= θ<= 2pi
1-\cos(θ)0\le\:θ\le\:2π
4(1-sin(θ))0<= θ<= pi
4(1-\sin(θ))0\le\:θ\le\:π
-1<sin(x)<-1/2
-1<\sin(x)<-\frac{1}{2}
sin(θ)>0\land tan(θ)>0
\sin(θ)>0\land\:\tan(θ)>0
tan(x)<0<5sin(x)
\tan(x)<0<5\sin(x)
cos(θ)<0\land sin(θ)>0
\cos(θ)<0\land\:\sin(θ)>0
-720<cos(1/2 x-10)<720
-720<\cos(\frac{1}{2}x-10)<720
sin(2arcsin(t))0<t<= 1
\sin(2\arcsin(t))0<t\le\:1
-1<= cos(2x)<= 1
-1\le\:\cos(2x)\le\:1
1
..
275
276
277
278
279
..
451