Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
inverse of f(x)=x^2-2,x>= 0
inverse\:f(x)=x^{2}-2,x\ge\:0
amplitude of-4cos(2x)
amplitude\:-4\cos(2x)
domain of f(x)=-700x+3500
domain\:f(x)=-700x+3500
domain of f(x)= 1/(sqrt(x^2-9))
domain\:f(x)=\frac{1}{\sqrt{x^{2}-9}}
inflection f(x)=3x^2ln(x/4)
inflection\:f(x)=3x^{2}\ln(\frac{x}{4})
range of 4x^2-5x+7
range\:4x^{2}-5x+7
asymptotes of f(x)= 1/(x+2)-2
asymptotes\:f(x)=\frac{1}{x+2}-2
asymptotes of 3/(x+2)
asymptotes\:\frac{3}{x+2}
domain of f(x)=sqrt(\sqrt{x-2)+5}
domain\:f(x)=\sqrt{\sqrt{x-2}+5}
slope ofintercept-4x+y=2
slopeintercept\:-4x+y=2
range of f(x)=x^2+4x+4
range\:f(x)=x^{2}+4x+4
inverse of f(x)=7-2x^3
inverse\:f(x)=7-2x^{3}
slope of 5x-y=2
slope\:5x-y=2
inverse of f(x)=(3x+2)/x
inverse\:f(x)=\frac{3x+2}{x}
domain of f(x)=(x/(x+9))/(x/(x+9)+9)
domain\:f(x)=\frac{\frac{x}{x+9}}{\frac{x}{x+9}+9}
domain of f(x)=8x-9
domain\:f(x)=8x-9
domain of ln(x/(2-x))
domain\:\ln(\frac{x}{2-x})
inverse of y=2x+8
inverse\:y=2x+8
domain of (x^4+3x^2+1)/(x(x^2+1))
domain\:\frac{x^{4}+3x^{2}+1}{x(x^{2}+1)}
asymptotes of f(x)= 3/(x+1)
asymptotes\:f(x)=\frac{3}{x+1}
domain of-sqrt(x+3)-2
domain\:-\sqrt{x+3}-2
domain of (x+2)^2
domain\:(x+2)^{2}
domain of f(x)=x^2+11
domain\:f(x)=x^{2}+11
domain of f(x)=(x+2)^3
domain\:f(x)=(x+2)^{3}
inverse of f(x)=10x^7
inverse\:f(x)=10x^{7}
inverse of f(x)=-3x-9
inverse\:f(x)=-3x-9
domain of f(x)=sqrt(9+5x)
domain\:f(x)=\sqrt{9+5x}
domain of y= x/(x^2-25)
domain\:y=\frac{x}{x^{2}-25}
slope ofintercept (2.8)(6)
slopeintercept\:(2.8)(6)
inverse of f(x)=8+sqrt(3)(y)
inverse\:f(x)=8+\sqrt{3}(y)
asymptotes of (-12x-40)/(9x+6)
asymptotes\:\frac{-12x-40}{9x+6}
domain of f(x)=sqrt(x)+\sqrt[3]{x}
domain\:f(x)=\sqrt{x}+\sqrt[3]{x}
inverse of 8sqrt(3.7(x+7))+5.3
inverse\:8\sqrt{3.7(x+7)}+5.3
inverse of f(x)=e^{x+4}+2
inverse\:f(x)=e^{x+4}+2
domain of f(x)=-log_{10}(9-x)
domain\:f(x)=-\log_{10}(9-x)
symmetry x^2+2
symmetry\:x^{2}+2
slope of 3/1
slope\:\frac{3}{1}
inverse of f(x)=x^2-3x-6
inverse\:f(x)=x^{2}-3x-6
frequency y=-cos(0.4t)
frequency\:y=-\cos(0.4t)
inverse of f(x)= x/(2x-1)
inverse\:f(x)=\frac{x}{2x-1}
inverse of f(x)=(7x+3)/8
inverse\:f(x)=\frac{7x+3}{8}
critical f(x)=sqrt(x^2+3)
critical\:f(x)=\sqrt{x^{2}+3}
extreme f(x)=-x^3+12x-19
extreme\:f(x)=-x^{3}+12x-19
parity \sqrt[3]{x^2*sqrt(x^a)}
parity\:\sqrt[3]{x^{2}\cdot\:\sqrt{x^{a}}}
inverse of f(x)=sqrt(x-9)
inverse\:f(x)=\sqrt{x-9}
slope ofintercept (4x-2y)/3 =x+1
slopeintercept\:\frac{4x-2y}{3}=x+1
asymptotes of f(x)= 1/((x-2))
asymptotes\:f(x)=\frac{1}{(x-2)}
inflection f(x)=x^2e^{4x}
inflection\:f(x)=x^{2}e^{4x}
domain of (2x^3-5)/(x^2+x-6)
domain\:\frac{2x^{3}-5}{x^{2}+x-6}
inverse of f(x)=-x^2-4x+1
inverse\:f(x)=-x^{2}-4x+1
inverse of f(x)=((2x-3))/(4x+5)
inverse\:f(x)=\frac{(2x-3)}{4x+5}
critical x^2+2x-15
critical\:x^{2}+2x-15
extreme y= 1/x+x
extreme\:y=\frac{1}{x}+x
intercepts of (x-9)^2-6
intercepts\:(x-9)^{2}-6
slope of y=2x+10
slope\:y=2x+10
distance (1,2),(5,1)
distance\:(1,2),(5,1)
domain of f(x)=6-2x
domain\:f(x)=6-2x
domain of f(x)=(sqrt(x^2-x-2))/(ln(x))
domain\:f(x)=\frac{\sqrt{x^{2}-x-2}}{\ln(x)}
line 2x-3y=9
line\:2x-3y=9
inverse of f(x)=log_{10}(x)
inverse\:f(x)=\log_{10}(x)
intercepts of f(x)=x+7
intercepts\:f(x)=x+7
range of (x-3)/(x^2+x+3)
range\:\frac{x-3}{x^{2}+x+3}
f(x)=1+cos^2(x)
f(x)=1+\cos^{2}(x)
domain of x-2+(x^2)/(sqrt(x^2-9))
domain\:x-2+\frac{x^{2}}{\sqrt{x^{2}-9}}
inverse of f(x)=((3x^2-2x+7))/(2x+5)
inverse\:f(x)=\frac{(3x^{2}-2x+7)}{2x+5}
domain of f(x)= 9/(sqrt(x+2))
domain\:f(x)=\frac{9}{\sqrt{x+2}}
domain of f(x)=sqrt(16+x^2)-sqrt(x+1)
domain\:f(x)=\sqrt{16+x^{2}}-\sqrt{x+1}
domain of f(x)=-2^x+1
domain\:f(x)=-2^{x}+1
critical f(x)=(x^2)/(x^2-9)
critical\:f(x)=\frac{x^{2}}{x^{2}-9}
domain of 2/x+x/(x+2)
domain\:\frac{2}{x}+\frac{x}{x+2}
domain of f(x)=x^2-4x+1,x<2
domain\:f(x)=x^{2}-4x+1,x<2
domain of f(x)=(8x+3)/(8-3x)
domain\:f(x)=\frac{8x+3}{8-3x}
inverse of f(x)=100x
inverse\:f(x)=100x
critical (x^2-2x+4)/(x-1)
critical\:\frac{x^{2}-2x+4}{x-1}
parity f(x)=x^4-x^2-3
parity\:f(x)=x^{4}-x^{2}-3
asymptotes of f(x)=(2x-4)/(x^2+x+1)
asymptotes\:f(x)=\frac{2x-4}{x^{2}+x+1}
inverse of f(x)= 1/3 x-4
inverse\:f(x)=\frac{1}{3}x-4
extreme f(x)=-4/(x^2+1)
extreme\:f(x)=-\frac{4}{x^{2}+1}
f(x)=x^2-3
f(x)=x^{2}-3
simplify (15.3)(2.2)
simplify\:(15.3)(2.2)
inverse of f(x)=10-x^2,x>= 0
inverse\:f(x)=10-x^{2},x\ge\:0
intercepts of f(x)=6y-3x=-18x
intercepts\:f(x)=6y-3x=-18x
domain of f(x)= 1/(ln(2x-1))
domain\:f(x)=\frac{1}{\ln(2x-1)}
intercepts of f(x)=y-6=4(x+5)
intercepts\:f(x)=y-6=4(x+5)
asymptotes of f(x)=-(1/3)^x+2
asymptotes\:f(x)=-(\frac{1}{3})^{x}+2
intercepts of (2x-6)(x-4)
intercepts\:(2x-6)(x-4)
range of 2(x-3)^2-5
range\:2(x-3)^{2}-5
domain of sqrt(6x+12)
domain\:\sqrt{6x+12}
inverse of f(x)=x^4+5
inverse\:f(x)=x^{4}+5
periodicity of f(x)=sin(2x)-cos(5x)
periodicity\:f(x)=\sin(2x)-\cos(5x)
asymptotes of f(x)=(20(2-x))/((x+4)^2)
asymptotes\:f(x)=\frac{20(2-x)}{(x+4)^{2}}
slope of 7x+4y=1
slope\:7x+4y=1
domain of f(x)=(6x)/(x^2+7x+12)
domain\:f(x)=\frac{6x}{x^{2}+7x+12}
inflection x^3+3x^2+3x+1
inflection\:x^{3}+3x^{2}+3x+1
asymptotes of tan(((2x-1))/3)
asymptotes\:\tan(\frac{(2x-1)}{3})
range of 2sin(2x)+3
range\:2\sin(2x)+3
parity cot(3x^2)
parity\:\cot(3x^{2})
domain of f(x)=sqrt(3x+12)
domain\:f(x)=\sqrt{3x+12}
range of (x+2)/(x-1)
range\:\frac{x+2}{x-1}
asymptotes of f(x)= 5/(x+7)+3
asymptotes\:f(x)=\frac{5}{x+7}+3
1
..
111
112
113
114
115
..
1324