Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
line (-79,45),(-43,29)
line\:(-79,45),(-43,29)
inverse of f(x)=-1/4 x^5
inverse\:f(x)=-\frac{1}{4}x^{5}
inverse of f(x)=2-x/3
inverse\:f(x)=2-\frac{x}{3}
asymptotes of 1/(x^2)
asymptotes\:\frac{1}{x^{2}}
domain of (x+12)/(x-8)
domain\:\frac{x+12}{x-8}
range of-x^2+4x-3
range\:-x^{2}+4x-3
monotone f(x)=x^4+2x^3+x^2
monotone\:f(x)=x^{4}+2x^{3}+x^{2}
domain of 2/(\frac{x){x+2}}
domain\:\frac{2}{\frac{x}{x+2}}
intercepts of f(x)=x^2+x-12
intercepts\:f(x)=x^{2}+x-12
y=-0.23x^2+1.87x+1.5
y=-0.23x^{2}+1.87x+1.5
asymptotes of f(x)=xe^{-8x}
asymptotes\:f(x)=xe^{-8x}
parallel y=y+4,\at 2,2
parallel\:y=y+4,\at\:2,2
domain of f(x)=(x+8)/(2-x)
domain\:f(x)=\frac{x+8}{2-x}
critical f(x)=40x-4x^2
critical\:f(x)=40x-4x^{2}
inflection x^3-4x
inflection\:x^{3}-4x
domain of f(x)= 30/7-3/7 x
domain\:f(x)=\frac{30}{7}-\frac{3}{7}x
inflection x-5x^{1/5}
inflection\:x-5x^{\frac{1}{5}}
perpendicular x-2y=5
perpendicular\:x-2y=5
range of f(x)=81000-7000x
range\:f(x)=81000-7000x
domain of y^2-1
domain\:y^{2}-1
f(x)=11000-x^3+36x^2+700x
f(x)=11000-x^{3}+36x^{2}+700x
domain of f(x)=(sqrt(4+x))/(6-x)
domain\:f(x)=\frac{\sqrt{4+x}}{6-x}
critical 2x+(1936)/x
critical\:2x+\frac{1936}{x}
f(x)=sqrt(4-x^2)
f(x)=\sqrt{4-x^{2}}
intercepts of 1/(x^2-4)
intercepts\:\frac{1}{x^{2}-4}
distance (4,2),(8,5)
distance\:(4,2),(8,5)
domain of f(x)=\sqrt[3]{t-1}
domain\:f(x)=\sqrt[3]{t-1}
inverse of (x+3)/(x-5)
inverse\:\frac{x+3}{x-5}
inverse of f(x)=3+sqrt(x-4)
inverse\:f(x)=3+\sqrt{x-4}
inverse of f(x)=1-x^2
inverse\:f(x)=1-x^{2}
domain of (2x^2-8x)/(x^2-7x+12)
domain\:\frac{2x^{2}-8x}{x^{2}-7x+12}
range of y=sqrt(4-x^2)
range\:y=\sqrt{4-x^{2}}
inverse of f(x)=(5-3x)/(7-4x)
inverse\:f(x)=\frac{5-3x}{7-4x}
critical sin(x)
critical\:\sin(x)
asymptotes of f(x)=3csc(x+pi/2)
asymptotes\:f(x)=3\csc(x+\frac{π}{2})
perpendicular 5x+6y=42
perpendicular\:5x+6y=42
range of (x^2-4)/(7x^2)
range\:\frac{x^{2}-4}{7x^{2}}
inverse of f(x)= 1/3 x-2
inverse\:f(x)=\frac{1}{3}x-2
inverse of F(X)=X^4
inverse\:F(X)=X^{4}
domain of f(x)=log_{2}(4-x^4)
domain\:f(x)=\log_{2}(4-x^{4})
domain of f(x)=-4sqrt(x)
domain\:f(x)=-4\sqrt{x}
monotone f(x)=-x^4-4x^3+8x-1
monotone\:f(x)=-x^{4}-4x^{3}+8x-1
domain of f(x)=15-x
domain\:f(x)=15-x
asymptotes of f(x)= 3/(x+5)
asymptotes\:f(x)=\frac{3}{x+5}
slope ofintercept-7y=8x-3
slopeintercept\:-7y=8x-3
domain of f(x)=(3x)/(x+5)
domain\:f(x)=\frac{3x}{x+5}
inverse of x/(x+9)
inverse\:\frac{x}{x+9}
asymptotes of f(x)=ln(e+x^2)
asymptotes\:f(x)=\ln(e+x^{2})
range of y=sqrt(2x+1)
range\:y=\sqrt{2x+1}
inverse of f(x)=(4x)/(x-2)
inverse\:f(x)=\frac{4x}{x-2}
domain of f(x)=sqrt(x^3-36x)
domain\:f(x)=\sqrt{x^{3}-36x}
slope of f(x)=-2x-4
slope\:f(x)=-2x-4
inflection (8x)/((5x^2+4)^2)
inflection\:\frac{8x}{(5x^{2}+4)^{2}}
asymptotes of f(x)=-1/(x-3)+2
asymptotes\:f(x)=-\frac{1}{x-3}+2
extreme f(x)=x^3-3x^2-24x-4
extreme\:f(x)=x^{3}-3x^{2}-24x-4
midpoint (-4,5),(2,-3)
midpoint\:(-4,5),(2,-3)
domain of 1/(x+10)
domain\:\frac{1}{x+10}
inverse of f(x)= 2/3 x-4
inverse\:f(x)=\frac{2}{3}x-4
slope of x+4y=1
slope\:x+4y=1
domain of f(x)=-sqrt(4-x^2)
domain\:f(x)=-\sqrt{4-x^{2}}
domain of x/(\sqrt[4]{25-x^2)}
domain\:\frac{x}{\sqrt[4]{25-x^{2}}}
asymptotes of f(x)=(-8)/(-x-6)
asymptotes\:f(x)=\frac{-8}{-x-6}
distance (2,7),(-4,-3)
distance\:(2,7),(-4,-3)
extreme f(x)=4-2x^2
extreme\:f(x)=4-2x^{2}
y=2
y=2
intercepts of f(x)=(-3x^2-x+3)/(x^2-1)
intercepts\:f(x)=\frac{-3x^{2}-x+3}{x^{2}-1}
domain of f(x)= 1/(sqrt(4-x^2))
domain\:f(x)=\frac{1}{\sqrt{4-x^{2}}}
symmetry y=-x^2+10x-23
symmetry\:y=-x^{2}+10x-23
extreme f(x)=x^2-9x+20-ln(x-3)
extreme\:f(x)=x^{2}-9x+20-\ln(x-3)
inverse of f(x)=-2x-5
inverse\:f(x)=-2x-5
extreme f(x)=(1.7)(3.5)
extreme\:f(x)=(1.7)(3.5)
domain of (2x^2+2x-12)/(x^2+x)
domain\:\frac{2x^{2}+2x-12}{x^{2}+x}
slope of y-4=0
slope\:y-4=0
parity f(x)=2x^5-x^3
parity\:f(x)=2x^{5}-x^{3}
inverse of f(x)=sin(2x)
inverse\:f(x)=\sin(2x)
slope of x-2y=1
slope\:x-2y=1
domain of f(x)=5-8x
domain\:f(x)=5-8x
domain of (x-6)/(x+6)
domain\:\frac{x-6}{x+6}
asymptotes of f(x)=x^2-1/x+2
asymptotes\:f(x)=x^{2}-\frac{1}{x}+2
domain of x^2+2x-8
domain\:x^{2}+2x-8
\begin{pmatrix}-4&\end{pmatrix}\begin{pmatrix}5&\end{pmatrix}
slope ofintercept y=-12
slopeintercept\:y=-12
domain of f(x)=2+sqrt(6+11x)
domain\:f(x)=2+\sqrt{6+11x}
domain of f(x)=(4x+20)/(x^2-25)
domain\:f(x)=\frac{4x+20}{x^{2}-25}
inverse of f(x)=3x-12
inverse\:f(x)=3x-12
domain of f(x)=(x^2)/(x+4)
domain\:f(x)=\frac{x^{2}}{x+4}
asymptotes of f(x)=(2x-5)/(3x+5)
asymptotes\:f(x)=\frac{2x-5}{3x+5}
periodicity of f(x)=3sin(x/2)
periodicity\:f(x)=3\sin(\frac{x}{2})
inverse of f(x)=(x-11)^2+5
inverse\:f(x)=(x-11)^{2}+5
inverse of 36.5-2.5x
inverse\:36.5-2.5x
asymptotes of f(x)=(x-2)/(5x-1)
asymptotes\:f(x)=\frac{x-2}{5x-1}
asymptotes of f(x)=(x^2+7x-7)/(x-2)
asymptotes\:f(x)=\frac{x^{2}+7x-7}{x-2}
domain of f(x)=16x+30
domain\:f(x)=16x+30
domain of f(x)=(sqrt(x-1))/(x^2+4)
domain\:f(x)=\frac{\sqrt{x-1}}{x^{2}+4}
inverse of x/(7x+4)
inverse\:\frac{x}{7x+4}
inverse of sqrt(x+6)+2
inverse\:\sqrt{x+6}+2
domain of f(x)= 2/(sqrt(9+4x))
domain\:f(x)=\frac{2}{\sqrt{9+4x}}
extreme f(x)=x^2ln(x/2)
extreme\:f(x)=x^{2}\ln(\frac{x}{2})
intercepts of y=2x^2+2x-4
intercepts\:y=2x^{2}+2x-4
range of f(x)=-5/x+2
range\:f(x)=-\frac{5}{x}+2
1
..
156
157
158
159
160
..
1324