Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Trigonometry Problems
prove sec^2(θ)-cos^2(θ)=tan(θ)sin(θ)
prove\:\sec^{2}(θ)-\cos^{2}(θ)=\tan(θ)\sin(θ)
prove 1/(sec(θ)-tan(θ))=sec(θ)tan(θ)
prove\:\frac{1}{\sec(θ)-\tan(θ)}=\sec(θ)\tan(θ)
prove 1+(cos^2(x))/(1+sin(x))=sin^2(x)
prove\:1+\frac{\cos^{2}(x)}{1+\sin(x)}=\sin^{2}(x)
prove 16((1-cos(2θ))/2)=8-8cos(2θ)
prove\:16(\frac{1-\cos(2θ)}{2})=8-8\cos(2θ)
prove cot(θ)sin(θ)cos(θ)=cos^2(θ)
prove\:\cot(θ)\sin(θ)\cos(θ)=\cos^{2}(θ)
prove sec(x)+tan(x)=(sin(x)+1)/(cos(x))
prove\:\sec(x)+\tan(x)=\frac{\sin(x)+1}{\cos(x)}
prove 1-2/(1+cot^2(x))=cos(2x)
prove\:1-\frac{2}{1+\cot^{2}(x)}=\cos(2x)
prove tan(x)-1=cot(x)
prove\:\tan(x)-1=\cot(x)
prove sin^2(x)=(sec(x)sin(x))/(tan(x)+cot(x))
prove\:\sin^{2}(x)=\frac{\sec(x)\sin(x)}{\tan(x)+\cot(x)}
prove sin(x+y)+sin(x-y)=2cos(x)sin(y)
prove\:\sin(x+y)+\sin(x-y)=2\cos(x)\sin(y)
prove cot(A)=(cos(A))/(sin(A))
prove\:\cot(A)=\frac{\cos(A)}{\sin(A)}
prove-cot^2(x)sec^2(x)=-1-cot^2(x)
prove\:-\cot^{2}(x)\sec^{2}(x)=-1-\cot^{2}(x)
prove (cos^2(x)+1)(sec^2(x))=tan^2(x)+2
prove\:(\cos^{2}(x)+1)(\sec^{2}(x))=\tan^{2}(x)+2
prove 3-3(cos(x)-sin(x))^2=-3sin(2x)
prove\:3-3(\cos(x)-\sin(x))^{2}=-3\sin(2x)
prove (cot(T)-tan(T))/(sin(T)+cos(T))=csc(T)-sec(T)
prove\:\frac{\cot(T)-\tan(T)}{\sin(T)+\cos(T)}=\csc(T)-\sec(T)
prove csc(pi/2-x)cos(x)=1
prove\:\csc(\frac{π}{2}-x)\cos(x)=1
prove 1-2cos^2(4)=2sin^2(4)-1
prove\:1-2\cos^{2}(4)=2\sin^{2}(4)-1
prove (tan(θ))/(cot(θ)+tan(θ))=sin^2(θ)
prove\:\frac{\tan(θ)}{\cot(θ)+\tan(θ)}=\sin^{2}(θ)
prove 2sin(x)+(2+sqrt(2))=-sqrt(2)csc(x)
prove\:2\sin(x)+(2+\sqrt{2})=-\sqrt{2}\csc(x)
prove sin(8a)=4sin(2a)cos(2a)cos(4a)
prove\:\sin(8a)=4\sin(2a)\cos(2a)\cos(4a)
prove sin^2(2x)= 1/(2(1-cos^4(x)))
prove\:\sin^{2}(2x)=\frac{1}{2(1-\cos^{4}(x))}
prove ((1-sin(a)))/(cos(a))=cos(a)
prove\:\frac{(1-\sin(a))}{\cos(a)}=\cos(a)
prove csc^2(x)(tan(x))-(tan(x))=cot(x)
prove\:\csc^{2}(x)(\tan(x))-(\tan(x))=\cot(x)
prove sin^4(t)-cos^4(t)=1-2cos^2(x)
prove\:\sin^{4}(t)-\cos^{4}(t)=1-2\cos^{2}(x)
prove csc^2(A)=1+tan^2(A)
prove\:\csc^{2}(A)=1+\tan^{2}(A)
prove 3tan^2(x)=3(tan(x))^2
prove\:3\tan^{2}(x)=3(\tan(x))^{2}
prove 3cos(θ)=sqrt(3)sin(-θ)
prove\:3\cos(θ)=\sqrt{3}\sin(-θ)
prove csc^2(θ)*tan^2(θ)-1=tan^2(θ)
prove\:\csc^{2}(θ)\cdot\:\tan^{2}(θ)-1=\tan^{2}(θ)
prove tan(a)+sec(a)=(1+sin(a))/(cos(a))
prove\:\tan(a)+\sec(a)=\frac{1+\sin(a)}{\cos(a)}
prove (sin(3a))/(sin(a))=2cos(2a)+1
prove\:\frac{\sin(3a)}{\sin(a)}=2\cos(2a)+1
prove 1/(sin(x)cos(x))=(sec(x))/(sin(x))
prove\:\frac{1}{\sin(x)\cos(x)}=\frac{\sec(x)}{\sin(x)}
prove sin(2x)+cos(2x)=1+2sin(x)cos(x)
prove\:\sin(2x)+\cos(2x)=1+2\sin(x)\cos(x)
prove (cot^2(x)+1)/(cot^2(x)-1)=sec(2x)
prove\:\frac{\cot^{2}(x)+1}{\cot^{2}(x)-1}=\sec(2x)
prove-(3)(sin^2(2z))/2 =(3cos(4z))/4
prove\:-(3)\frac{\sin^{2}(2z)}{2}=\frac{3\cos(4z)}{4}
prove cot(-x)sin(-x)=cos(x)
prove\:\cot(-x)\sin(-x)=\cos(x)
prove tan((7u)/2)=csc(7u)-cot(7u)
prove\:\tan(\frac{7u}{2})=\csc(7u)-\cot(7u)
prove (sin(x)+cos(x))2=2cos(x)sin(x)+1
prove\:(\sin(x)+\cos(x))2=2\cos(x)\sin(x)+1
prove (sin(x))/1+1/(sin(x))=2csc(x)
prove\:\frac{\sin(x)}{1}+\frac{1}{\sin(x)}=2\csc(x)
prove (sin(x)+1)^2+cos^2(x)=2
prove\:(\sin(x)+1)^{2}+\cos^{2}(x)=2
prove csc(x)sec(x)cot(x)=csc^2(x)
prove\:\csc(x)\sec(x)\cot(x)=\csc^{2}(x)
prove (csc(x))/(1+tan(x))=cot^2(x)
prove\:\frac{\csc(x)}{1+\tan(x)}=\cot^{2}(x)
prove sin^2(x)=tan^2(x)+1
prove\:\sin^{2}(x)=\tan^{2}(x)+1
prove 1/(cot(x)+1)=(tan(x))/(tan(x)+1)
prove\:\frac{1}{\cot(x)+1}=\frac{\tan(x)}{\tan(x)+1}
prove (csc^2(θ))/(csc^2(θ)-2)=sec(2θ)
prove\:\frac{\csc^{2}(θ)}{\csc^{2}(θ)-2}=\sec(2θ)
prove cos^2(u)= 1/2+1/2 cos(2u)
prove\:\cos^{2}(u)=\frac{1}{2}+\frac{1}{2}\cos(2u)
prove 2sin(-y)cos(x)=2sin(-y)cos(x)
prove\:2\sin(-y)\cos(x)=2\sin(-y)\cos(x)
prove cos(θ)=sec(θ)-(tan^2(θ))/(sec(θ))
prove\:\cos(θ)=\sec(θ)-\frac{\tan^{2}(θ)}{\sec(θ)}
prove csc(x^2)sec(x^2)=csc(x^2)+sec(x^2)
prove\:\csc(x^{2})\sec(x^{2})=\csc(x^{2})+\sec(x^{2})
prove tan(θ/2)=csc^2(θ)-cot^2(θ)
prove\:\tan(\frac{θ}{2})=\csc^{2}(θ)-\cot^{2}(θ)
prove 4+4cos(2x)=8cos^2(x)
prove\:4+4\cos(2x)=8\cos^{2}(x)
prove (sec(θ)csc(θ))/2 =csc(2θ)
prove\:\frac{\sec(θ)\csc(θ)}{2}=\csc(2θ)
prove (cos(x))/(cot(x)sin(x))=1
prove\:\frac{\cos(x)}{\cot(x)\sin(x)}=1
prove (1+cos(θ))/(csc(θ))=sin(θ)+cos(θ)
prove\:\frac{1+\cos(θ)}{\csc(θ)}=\sin(θ)+\cos(θ)
prove sin^2(x)+2cos^2(x)=1+cos^2(x)
prove\:\sin^{2}(x)+2\cos^{2}(x)=1+\cos^{2}(x)
prove sin(2θ)=2cos(θ)*sin(θ)
prove\:\sin(2θ)=2\cos(θ)\cdot\:\sin(θ)
prove (1+cos(a))/(sin(a))=cot(a/2)
prove\:\frac{1+\cos(a)}{\sin(a)}=\cot(\frac{a}{2})
prove csc(θ)sin(θ)=-8/43
prove\:\csc(θ)\sin(θ)=-\frac{8}{43}
prove csc(θ)sin(θ)-sin^2(θ)=cos^2(θ)
prove\:\csc(θ)\sin(θ)-\sin^{2}(θ)=\cos^{2}(θ)
prove sin(pi/2+x)=-cos(x)
prove\:\sin(\frac{π}{2}+x)=-\cos(x)
prove tan^2(x)-sec(x)=1
prove\:\tan^{2}(x)-\sec(x)=1
prove 3cot^2(y)(sec^2(y)-1)=3
prove\:3\cot^{2}(y)(\sec^{2}(y)-1)=3
prove 2sin(pi)=5sin(pi)
prove\:2\sin(π)=5\sin(π)
prove tan(x)-1/(tan(x))=2sin^2(x)-1
prove\:\tan(x)-\frac{1}{\tan(x)}=2\sin^{2}(x)-1
prove 1/(cot(u))=(cot(u))/1
prove\:\frac{1}{\cot(u)}=\frac{\cot(u)}{1}
prove sin^2(x)*sec(x)=tan^2(x)
prove\:\sin^{2}(x)\cdot\:\sec(x)=\tan^{2}(x)
prove 1+2sin(x)cos(x)=(sin(x)+cos(x))^2
prove\:1+2\sin(x)\cos(x)=(\sin(x)+\cos(x))^{2}
prove sin(2x)=2cos(x)
prove\:\sin(2x)=2\cos(x)
prove sec(β)sin(β)cot(β)=1
prove\:\sec(β)\sin(β)\cot(β)=1
prove 1-sin^2(θ)+sin^4(θ)=cos^4(θ)
prove\:1-\sin^{2}(θ)+\sin^{4}(θ)=\cos^{4}(θ)
prove sec(x)-tan(x)=(cos^2(x))/(sin(x))
prove\:\sec(x)-\tan(x)=\frac{\cos^{2}(x)}{\sin(x)}
prove 3-6sin^2(x)=-3cos(2x)
prove\:3-6\sin^{2}(x)=-3\cos(2x)
prove (sin((5*pi/3)/4))=(sin(5 pi/(12)))
prove\:(\sin(\frac{5\cdot\:\frac{π}{3}}{4}))=(\sin(5\frac{π}{12}))
prove tan((5pi)/(12))=tan(pi/4+pi/6)
prove\:\tan(\frac{5π}{12})=\tan(\frac{π}{4}+\frac{π}{6})
prove sin^2(θ)=csc^2(θ)
prove\:\sin^{2}(θ)=\csc^{2}(θ)
prove tan(x)(sec^2(x)-1)=tan^3(x)
prove\:\tan(x)(\sec^{2}(x)-1)=\tan^{3}(x)
prove sin(x)=-1
prove\:\sin(x)=-1
prove sec(b)+tan(b)=(cos(b))/(1-sin(x))
prove\:\sec(b)+\tan(b)=\frac{\cos(b)}{1-\sin(x)}
prove 2sinh(ln(x))+(1^2)/2-4/3 =2
prove\:2\sinh(\ln(x))+\frac{1^{2}}{2}-\frac{4}{3}=2
prove 2cot^2(x)sin^2(x)=1+cos(2x)
prove\:2\cot^{2}(x)\sin^{2}(x)=1+\cos(2x)
prove 1/(tan(x))-tan(x)=2cot(2x)
prove\:\frac{1}{\tan(x)}-\tan(x)=2\cot(2x)
prove sec(x)+1=(sin(x)tan(x))/(1-cos(x))
prove\:\sec(x)+1=\frac{\sin(x)\tan(x)}{1-\cos(x)}
prove tan(u)+cos(2u)*tan(u)=sin(2u)
prove\:\tan(u)+\cos(2u)\cdot\:\tan(u)=\sin(2u)
prove (csc^2(θ)-1)/(csc^2(θ))=cos^2(θ)
prove\:\frac{\csc^{2}(θ)-1}{\csc^{2}(θ)}=\cos^{2}(θ)
prove 1+cos(x)*sin(x)=sin(x)
prove\:1+\cos(x)\cdot\:\sin(x)=\sin(x)
prove (sin(x)) 1/(sin(x))=1
prove\:(\sin(x))\frac{1}{\sin(x)}=1
prove cos(x)=(cot(x))/(csc(x)-sin(x))
prove\:\cos(x)=\frac{\cot(x)}{\csc(x)-\sin(x)}
prove cos^2(2x)=((1+cos(4x)))/2
prove\:\cos^{2}(2x)=\frac{(1+\cos(4x))}{2}
prove (1+sin(x))/(cos(x)tan(x)-1)=-1
prove\:\frac{1+\sin(x)}{\cos(x)\tan(x)-1}=-1
prove (sin(x)sec(x))/(tan(x))=1
prove\:\frac{\sin(x)\sec(x)}{\tan(x)}=1
prove cot(x)+5=5+csc(x)*cos(x)
prove\:\cot(x)+5=5+\csc(x)\cdot\:\cos(x)
prove csc(θ)=cos(θ)cot(θ)+sin^2(θ)csc(θ)
prove\:\csc(θ)=\cos(θ)\cot(θ)+\sin^{2}(θ)\csc(θ)
prove cos(y)csc(y)=cot(y)
prove\:\cos(y)\csc(y)=\cot(y)
prove (tan(a))/(sin(a))-sec(a)=0
prove\:\frac{\tan(a)}{\sin(a)}-\sec(a)=0
prove 1/(cot(θ))=(tan(θ))/(sin(θ))
prove\:\frac{1}{\cot(θ)}=\frac{\tan(θ)}{\sin(θ)}
prove (1+sin(θ))/(cos(θ))=sec(θ)+cot(θ)
prove\:\frac{1+\sin(θ)}{\cos(θ)}=\sec(θ)+\cot(θ)
prove 2cos(θ)= 2/(sec(θ))
prove\:2\cos(θ)=\frac{2}{\sec(θ)}
prove (1+sin(θ))(1-sin(θ))=cos^2(x)
prove\:(1+\sin(θ))(1-\sin(θ))=\cos^{2}(x)
prove sin^2(θ)=csc(θ)
prove\:\sin^{2}(θ)=\csc(θ)
prove (1-cot(a))/(csc(a))=sin(a)-cos(a)
prove\:\frac{1-\cot(a)}{\csc(a)}=\sin(a)-\cos(a)
prove 1/(tan^2(x)+1)+1/(cot^2(x)+1)=1
prove\:\frac{1}{\tan^{2}(x)+1}+\frac{1}{\cot^{2}(x)+1}=1
1
..
249
250
251
252
253
..
451