Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
derivative of cos(θ^2)
derivative\:\cos(θ^{2})
integral of x(x^2+4)^5
\int\:x(x^{2}+4)^{5}dx
(\partial)/(\partial x)(e^{yx})
\frac{\partial\:}{\partial\:x}(e^{yx})
integral of (e^{2y})/(e^y-1)
\int\:\frac{e^{2y}}{e^{y}-1}dy
integral of sec^3(5x)
\int\:\sec^{3}(5x)dx
derivative of y=arcsin(x)
derivative\:y=\arcsin(x)
integral of x/((x^2-1)^{1/2)}
\int\:\frac{x}{(x^{2}-1)^{\frac{1}{2}}}dx
derivative of 2z
derivative\:2z
(\partial)/(\partial y)(x^2*e^{-2y})
\frac{\partial\:}{\partial\:y}(x^{2}\cdot\:e^{-2y})
implicit (dy)/(dx),y=x^pi
implicit\:\frac{dy}{dx},y=x^{π}
area y=\sqrt[3]{x},y= 1/x ,x=27
area\:y=\sqrt[3]{x},y=\frac{1}{x},x=27
ty^'+t^2+ty-y=0
ty^{\prime\:}+t^{2}+ty-y=0
limit as h approaches 0 of ((1+h)^9-1)/h
\lim\:_{h\to\:0}(\frac{(1+h)^{9}-1}{h})
derivative of x^3+6x^2
\frac{d}{dx}(x^{3}+6x^{2})
5sqrt(xy)((dy)/(dx))=3
5\sqrt{xy}(\frac{dy}{dx})=3
integral from 0 to 2 of xsqrt(1+2x^2)
\int\:_{0}^{2}x\sqrt{1+2x^{2}}dx
integral of 3+tan^2(x)
\int\:3+\tan^{2}(x)dx
derivative of 3csc(x)
derivative\:3\csc(x)
integral of cos^4(11x)
\int\:\cos^{4}(11x)dx
integral of (e^{2x}+1)/(e^x)
\int\:\frac{e^{2x}+1}{e^{x}}dx
derivative of 1-cos(x)
derivative\:1-\cos(x)
derivative of (5+sin(x))/(5x+cos(x))
derivative\:\frac{5+\sin(x)}{5x+\cos(x)}
integral of 1/(yln^2(y))
\int\:\frac{1}{y\ln^{2}(y)}dy
integral of (sin(x)-x)/(x^3)
\int\:\frac{\sin(x)-x}{x^{3}}dx
y^'=4(y^2+1)
y^{\prime\:}=4(y^{2}+1)
limit as x approaches infinity of 1/x-5
\lim\:_{x\to\:\infty\:}(\frac{1}{x}-5)
limit as x approaches 3 of 4/(x^2+2x+3)
\lim\:_{x\to\:3}(\frac{4}{x^{2}+2x+3})
derivative of 14-1/2 x^{-3}
\frac{d}{dx}(14-\frac{1}{2}x^{-3})
derivative of y=arcsin(8x+1)
derivative\:y=\arcsin(8x+1)
derivative of cos^2(2x^4-4)
\frac{d}{dx}(\cos^{2}(2x^{4}-4))
integral of (sec^4(x))/(tan^3(x))
\int\:\frac{\sec^{4}(x)}{\tan^{3}(x)}dx
integral of (x-5)cos(x)
\int\:(x-5)\cos(x)dx
limit as x approaches 2 of ((x-2))/(x-2)
\lim\:_{x\to\:2}(\frac{(x-2)}{x-2})
integral of 3/(x^2-1)
\int\:\frac{3}{x^{2}-1}dx
integral of θsec^2(θ)
\int\:θ\sec^{2}(θ)dθ
maclaurin sin(x^4)
maclaurin\:\sin(x^{4})
integral from 0 to 7 of (3t)/((t-8)^2)
\int\:_{0}^{7}\frac{3t}{(t-8)^{2}}dt
tangent of f(x)= 2/(3x+5),\at a=-1
tangent\:f(x)=\frac{2}{3x+5},\at\:a=-1
integral from 0 to 4 of pi(4x-x^2)
\int\:_{0}^{4}π(4x-x^{2})dx
derivative of f(x)=\sqrt[4]{x^5}-3/(x^2)
derivative\:f(x)=\sqrt[4]{x^{5}}-\frac{3}{x^{2}}
maclaurin xsin(-2x)pi
maclaurin\:x\sin(-2x)π
9y^{''}-7y=0
9y^{\prime\:\prime\:}-7y=0
derivative of (40/(x+1))
\frac{d}{dx}(\frac{40}{x+1})
inverse oflaplace ((s+2))/(s^2+4)
inverselaplace\:\frac{(s+2)}{s^{2}+4}
integral of 1tan^2(x)
\int\:1\tan^{2}(x)dx
derivative of g(x)=14(1.7^x)
derivative\:g(x)=14(1.7^{x})
(\partial)/(\partial y)(e^{3x})
\frac{\partial\:}{\partial\:y}(e^{3x})
limit as x approaches 2-of x/(|x|)
\lim\:_{x\to\:2-}(\frac{x}{\left|x\right|})
integral of (x^2-1)/(x^2-4)
\int\:\frac{x^{2}-1}{x^{2}-4}dx
limit as x approaches infinity of (3e^x)/(9+2e^{5x)}
\lim\:_{x\to\:\infty\:}(\frac{3e^{x}}{9+2e^{5x}})
y^'+3y=5
y^{\prime\:}+3y=5
limit as x approaches infinity of (x^3+2x+4)/(e^{1x)+1}
\lim\:_{x\to\:\infty\:}(\frac{x^{3}+2x+4}{e^{1x}+1})
normal of y=4x^2-6x,\at x=2
normal\:y=4x^{2}-6x,\at\:x=2
(dy)/(dx)=(y^2+x^2)/(yx)
\frac{dy}{dx}=\frac{y^{2}+x^{2}}{yx}
integral of cos^9(x)
\int\:\cos^{9}(x)dx
integral of (8x^3-3x^2+8)
\int\:(8x^{3}-3x^{2}+8)dx
derivative of x^5e^{6x}
\frac{d}{dx}(x^{5}e^{6x})
limit as x approaches infinity of 2/x
\lim\:_{x\to\:\infty\:}(\frac{2}{x})
derivative of-2cos(3x)
\frac{d}{dx}(-2\cos(3x))
limit as x approaches 0+of x/(3x)-7x
\lim\:_{x\to\:0+}(\frac{x}{3x}-7x)
integral of 3/91 x^2
\int\:\frac{3}{91}x^{2}dx
(\partial)/(\partial x)((x+y)/(x+z))
\frac{\partial\:}{\partial\:x}(\frac{x+y}{x+z})
(dx)/(dt)=-x/(10)+1/(10e^{\frac{t){10}}}
\frac{dx}{dt}=-\frac{x}{10}+\frac{1}{10e^{\frac{t}{10}}}
ty^'-y=3t^2cos(2t)
ty^{\prime\:}-y=3t^{2}\cos(2t)
integral of x(8x+5)^8
\int\:x(8x+5)^{8}dx
integral of x-1/2
\int\:x-\frac{1}{2}dx
y^{''}+3y^'+2y= 1/(2+e^x)
y^{\prime\:\prime\:}+3y^{\prime\:}+2y=\frac{1}{2+e^{x}}
tangent of f(x)=(1+4x)^{3/2},\at x=2
tangent\:f(x)=(1+4x)^{\frac{3}{2}},\at\:x=2
derivative of y=x^2-5x-3
derivative\:y=x^{2}-5x-3
derivative of (tan^2(x)/2)
\frac{d}{dx}(\frac{\tan^{2}(x)}{2})
derivative of e^{3x+3}
\frac{d}{dx}(e^{3x+3})
integral of 1/(2x^2-5x+7)
\int\:\frac{1}{2x^{2}-5x+7}dx
integral of (x+1)e^{x^2+2x}
\int\:(x+1)e^{x^{2}+2x}dx
derivative of g(t)=t^2-7/(t^3)
derivative\:g(t)=t^{2}-\frac{7}{t^{3}}
limit as x approaches 0 of ((343+x)^{1/3}-7)/x
\lim\:_{x\to\:0}(\frac{(343+x)^{\frac{1}{3}}-7}{x})
(\partial)/(\partial x)(-2x^2)
\frac{\partial\:}{\partial\:x}(-2x^{2})
laplacetransform 1+sin(pi*t)
laplacetransform\:1+\sin(π\cdot\:t)
derivative of 6sqrt(2)x
\frac{d}{dx}(6\sqrt{2}x)
derivative of e^{-2/x}
derivative\:e^{-\frac{2}{x}}
derivative of xe^{5x}
derivative\:xe^{5x}
integral of (e^{sqrt(x+1)})/(sqrt(x+1))
\int\:\frac{e^{\sqrt{x+1}}}{\sqrt{x+1}}dx
derivative of f(x)=(x^2)/(9+8x)
derivative\:f(x)=\frac{x^{2}}{9+8x}
integral of x^5*e^{x^3}
\int\:x^{5}\cdot\:e^{x^{3}}dx
integral of x/(x^2sqrt(x^2-16))
\int\:\frac{x}{x^{2}\sqrt{x^{2}-16}}dx
derivative of tan(5x^2)
\frac{d}{dx}(\tan(5x^{2}))
(\partial)/(\partial x)(4ln(x))
\frac{\partial\:}{\partial\:x}(4\ln(x))
partialfraction (x^2)/(x^2-4)
partialfraction\:\frac{x^{2}}{x^{2}-4}
roots ax*e^{bx}
roots\:ax\cdot\:e^{bx}
integral of (3x^2-8x+2)
\int\:(3x^{2}-8x+2)dx
simplify 3/(cos^2(3x+5))
simplify\:\frac{3}{\cos^{2}(3x+5)}
d/(dt)((t+3)^{2/3}(2t^2-3)^3)
\frac{d}{dt}((t+3)^{\frac{2}{3}}(2t^{2}-3)^{3})
derivative of f(t)=5t-9t^2
derivative\:f(t)=5t-9t^{2}
(\partial)/(\partial x)(x^2-xy+y^2+3x-2y+1)
\frac{\partial\:}{\partial\:x}(x^{2}-xy+y^{2}+3x-2y+1)
y^2=2xyy^'
y^{2}=2xyy^{\prime\:}
limit as x approaches-1 of 2
\lim\:_{x\to\:-1}(2)
(\partial)/(\partial x)(x/(x^2))
\frac{\partial\:}{\partial\:x}(\frac{x}{x^{2}})
y^'+3/x y= 1/(x^2)
y^{\prime\:}+\frac{3}{x}y=\frac{1}{x^{2}}
derivative of 4-3sin(3x)
\frac{d}{dx}(4-3\sin(3x))
y^{''}+9y=-sin(3x),y(0)=0,y^'(0)= 1/6
y^{\prime\:\prime\:}+9y=-\sin(3x),y(0)=0,y^{\prime\:}(0)=\frac{1}{6}
taylor x^3,0
taylor\:x^{3},0
1
..
144
145
146
147
148
..
2459