Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
periodicity of f(x)=cos((14pi)/3)
periodicity\:f(x)=\cos(\frac{14π}{3})
slope ofintercept 4x+2y=18
slopeintercept\:4x+2y=18
domain of f(x)=2x-5
domain\:f(x)=2x-5
inverse of 1-ln(x-2)
inverse\:1-\ln(x-2)
line (0,1),(3,5)
line\:(0,1),(3,5)
line x=1-2t
line\:x=1-2t
domain of y=sqrt(x^2-9)
domain\:y=\sqrt{x^{2}-9}
inverse of f(x)=-x^2+4x+1
inverse\:f(x)=-x^{2}+4x+1
inverse of ln(5x)
inverse\:\ln(5x)
inverse of f(x)=-4x-1
inverse\:f(x)=-4x-1
inverse of 4-7x
inverse\:4-7x
range of f(x)=sqrt(x+6)
range\:f(x)=\sqrt{x+6}
asymptotes of f(x)=(x^2+4x+3)/(x+1)
asymptotes\:f(x)=\frac{x^{2}+4x+3}{x+1}
y=-x+1
y=-x+1
domain of (1-x-x^2)/(2x-7)
domain\:\frac{1-x-x^{2}}{2x-7}
periodicity of 6sin(t+4)
periodicity\:6\sin(t+4)
range of-2x^2+8x-5
range\:-2x^{2}+8x-5
inflection (x-2)/(sqrt(x^2+1))
inflection\:\frac{x-2}{\sqrt{x^{2}+1}}
domain of f(x)=sqrt(6x-30)
domain\:f(x)=\sqrt{6x-30}
domain of 2sqrt(x)+1
domain\:2\sqrt{x}+1
inverse of f(x)=(x+2)^5+2
inverse\:f(x)=(x+2)^{5}+2
periodicity of f(x)=cos((8pi)/(31))
periodicity\:f(x)=\cos(\frac{8π}{31})
domain of x^2+10x+25
domain\:x^{2}+10x+25
domain of sqrt(x+5)-7
domain\:\sqrt{x+5}-7
range of 3x+7
range\:3x+7
domain of f(x)=(5x)/(27-x^3)
domain\:f(x)=\frac{5x}{27-x^{3}}
range of f(x)=4x^2+5x-1
range\:f(x)=4x^{2}+5x-1
critical f(x)=t^4-24t^3+154t^2
critical\:f(x)=t^{4}-24t^{3}+154t^{2}
inverse of 7/(x^2+1)
inverse\:\frac{7}{x^{2}+1}
intercepts of f(x)=(4x+9)/(3x-6)
intercepts\:f(x)=\frac{4x+9}{3x-6}
intercepts of y=x+7
intercepts\:y=x+7
inverse of f(x)=e^{(sqrt(x))/3}
inverse\:f(x)=e^{\frac{\sqrt{x}}{3}}
extreme f(x)=2x^3+3x^2-12x+1
extreme\:f(x)=2x^{3}+3x^{2}-12x+1
intercepts of f(x)=x+5y=10
intercepts\:f(x)=x+5y=10
amplitude of-1/6 sin(6x)
amplitude\:-\frac{1}{6}\sin(6x)
domain of f(x)=-1/(2sqrt(5-x))
domain\:f(x)=-\frac{1}{2\sqrt{5-x}}
domain of f(x)=(x^2-9)/(x+3)
domain\:f(x)=\frac{x^{2}-9}{x+3}
inverse of 1/2 (x-2)^2-3
inverse\:\frac{1}{2}(x-2)^{2}-3
domain of 3x^5+5x^3-2x
domain\:3x^{5}+5x^{3}-2x
line (0,1),(4.5,2)
line\:(0,1),(4.5,2)
critical x^2ln(x/6)
critical\:x^{2}\ln(\frac{x}{6})
range of f(x)=x^2-8x+12
range\:f(x)=x^{2}-8x+12
inverse of f(x)= x/(x-20)
inverse\:f(x)=\frac{x}{x-20}
parity f(x)=2x-tan(x)
parity\:f(x)=2x-\tan(x)
inverse of f(x)= 5/x+4
inverse\:f(x)=\frac{5}{x}+4
inverse of y=(5x)/(2x+3)
inverse\:y=\frac{5x}{2x+3}
extreme 2x^3-9x^2-24x+30
extreme\:2x^{3}-9x^{2}-24x+30
inverse of f(x)=sqrt(6)
inverse\:f(x)=\sqrt{6}
intercepts of f(x)=ln(x)+2
intercepts\:f(x)=\ln(x)+2
extreme f(x)=x^4-2x^2-4
extreme\:f(x)=x^{4}-2x^{2}-4
critical f(x)=t^3-3t-10
critical\:f(x)=t^{3}-3t-10
inverse of f(x)=-2x+2
inverse\:f(x)=-2x+2
domain of 2x^2+x-1
domain\:2x^{2}+x-1
critical xsqrt(2x+1)
critical\:x\sqrt{2x+1}
intercepts of y=x^2+5x+6
intercepts\:y=x^{2}+5x+6
range of 4x^4-14
range\:4x^{4}-14
extreme x^3e^{3x}
extreme\:x^{3}e^{3x}
intercepts of x^3-x
intercepts\:x^{3}-x
inverse of f(x)= 1/2 (x-4)^3
inverse\:f(x)=\frac{1}{2}(x-4)^{3}
domain of sqrt(2x-x^2)
domain\:\sqrt{2x-x^{2}}
domain of f(x)=5-2x^2
domain\:f(x)=5-2x^{2}
inverse of x^2-4
inverse\:x^{2}-4
parity f(x)=-5x^3+5x
parity\:f(x)=-5x^{3}+5x
asymptotes of f(x)=(x-1)/(x+4)
asymptotes\:f(x)=\frac{x-1}{x+4}
critical f(x)=-x^4+8x^3-6x^2
critical\:f(x)=-x^{4}+8x^{3}-6x^{2}
asymptotes of f(x)=(6-2x)/(x+3)
asymptotes\:f(x)=\frac{6-2x}{x+3}
domain of f(x)=(sqrt(2x+3))/(x-3)
domain\:f(x)=\frac{\sqrt{2x+3}}{x-3}
range of f(x)=((x^2-3x-4)/(x+1))
range\:f(x)=(\frac{x^{2}-3x-4}{x+1})
inverse of f(x)=ln(x/(x+1))
inverse\:f(x)=\ln(\frac{x}{x+1})
domain of f(x)=(8x+1)/(x^2-4)
domain\:f(x)=\frac{8x+1}{x^{2}-4}
parallel y=-1/4 x+3(4.1)
parallel\:y=-\frac{1}{4}x+3(4.1)
asymptotes of f(x)= 2/x-5
asymptotes\:f(x)=\frac{2}{x}-5
domain of-3x+5
domain\:-3x+5
inflection f(x)=3x^3-36x-9
inflection\:f(x)=3x^{3}-36x-9
intercepts of f(x)=x^2+x
intercepts\:f(x)=x^{2}+x
intercepts of f(x)=x^3-17x^2+49x-833
intercepts\:f(x)=x^{3}-17x^{2}+49x-833
range of 64-x
range\:64-x
range of f(x)=8x^2+1
range\:f(x)=8x^{2}+1
slope of 3x-5y=15
slope\:3x-5y=15
inverse of f(x)=-5cos(2x)
inverse\:f(x)=-5\cos(2x)
inverse of f(x)= 2/3 w-8
inverse\:f(x)=\frac{2}{3}w-8
f(x)=-2x^2
f(x)=-2x^{2}
shift 4cos(2x+pi)
shift\:4\cos(2x+π)
domain of f(x)=sqrt((x-2)/x)
domain\:f(x)=\sqrt{\frac{x-2}{x}}
domain of f(x)=sqrt(-x-13)
domain\:f(x)=\sqrt{-x-13}
periodicity of-3sin(pi/2 x)+1
periodicity\:-3\sin(\frac{π}{2}x)+1
critical-x^2+5x+1
critical\:-x^{2}+5x+1
f(x)=x^2-5x+4
f(x)=x^{2}-5x+4
inflection (x^3)/(x+1)
inflection\:\frac{x^{3}}{x+1}
midpoint (-7,2),(3,-3)
midpoint\:(-7,2),(3,-3)
critical f(x)=(x^2)/(x^2-4)
critical\:f(x)=\frac{x^{2}}{x^{2}-4}
range of f(x)=2x^2-7x-4
range\:f(x)=2x^{2}-7x-4
critical f(x)=-x^3+2x^2+2
critical\:f(x)=-x^{3}+2x^{2}+2
domain of f(x)= 2/((x^2+4))
domain\:f(x)=\frac{2}{(x^{2}+4)}
distance (-4,-3),(2,5)
distance\:(-4,-3),(2,5)
inverse of f(x)=x^{3/5}
inverse\:f(x)=x^{\frac{3}{5}}
inverse of f(x)=-x^2+2x+3
inverse\:f(x)=-x^{2}+2x+3
inverse of f(x)=(-4x)/(2x-3)
inverse\:f(x)=\frac{-4x}{2x-3}
slope of Y=-5
slope\:Y=-5
slope of m=8
slope\:m=8
1
..
122
123
124
125
126
..
1324