Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
(\partial)/(\partial r)(r^2+s^2)
\frac{\partial\:}{\partial\:r}(r^{2}+s^{2})
limit as x approaches 3-of (5x)/(x^2-9)
\lim\:_{x\to\:3-}(\frac{5x}{x^{2}-9})
integral from 0 to 5 of 1/(25-x^2)
\int\:_{0}^{5}\frac{1}{25-x^{2}}dx
limit as x approaches-1-of 9/(x^3-1)
\lim\:_{x\to\:-1-}(\frac{9}{x^{3}-1})
integral of 3/(sqrt(16-x^2))
\int\:\frac{3}{\sqrt{16-x^{2}}}dx
derivative of f(x)=4t
derivative\:f(x)=4t
derivative of sqrt(x)(x-4)
derivative\:\sqrt{x}(x-4)
sum from n=1 to infinity}((-1)^n(2)^{n-1})/((2)^{n+1)(n)^{1/3 of}
\sum\:_{n=1}^{\infty\:}\frac{(-1)^{n}(2)^{n-1}}{(2)^{n+1}(n)^{\frac{1}{3}}}
inverse oflaplace (2x-6)/(x^2+9)
inverselaplace\:\frac{2x-6}{x^{2}+9}
y^'+(4y)/x+4/x =0,y(1)=-2
y^{\prime\:}+\frac{4y}{x}+\frac{4}{x}=0,y(1)=-2
derivative of 3*e^{(x^3/9})
\frac{d}{dx}(3\cdot\:e^{\frac{x^{3}}{9}})
limit as x approaches 0 of | x/x |
\lim\:_{x\to\:0}(\left|\frac{x}{x}\right|)
integral of (9x-2)^{-3}
\int\:(9x-2)^{-3}dx
integral of coth(y)
\int\:\coth(y)dy
integral of (x^6+e^{3x})
\int\:(x^{6}+e^{3x})dx
derivative of (x^3/3+7x^2+49x)
\frac{d}{dx}(\frac{x^{3}}{3}+7x^{2}+49x)
limit as x approaches m of x-[x]
\lim\:_{x\to\:m}(x-[x])
integral of 5re^{r/2}
\int\:5re^{\frac{r}{2}}dr
derivative of f(x)=x^2ln(8-5x^2)
derivative\:f(x)=x^{2}\ln(8-5x^{2})
area y=x^3-10x,y=6x
area\:y=x^{3}-10x,y=6x
(dy)/(dx)=x^6y^{-5}
\frac{dy}{dx}=x^{6}y^{-5}
integral from-5 to 5 of 1/(|x|^{2/3)}
\int\:_{-5}^{5}\frac{1}{\left|x\right|^{\frac{2}{3}}}dx
derivative of y=sqrt(arctan(x))
derivative\:y=\sqrt{\arctan(x)}
(\partial)/(\partial y)(x^4-2x^2y)
\frac{\partial\:}{\partial\:y}(x^{4}-2x^{2}y)
(\partial)/(\partial x)(e^{2xy^2}+3x)
\frac{\partial\:}{\partial\:x}(e^{2xy^{2}}+3x)
derivative of (3^x/(tan(x)))
\frac{d}{dx}(\frac{3^{x}}{\tan(x)})
(\partial)/(\partial x)(tan(x^3y^2))
\frac{\partial\:}{\partial\:x}(\tan(x^{3}y^{2}))
derivative of y=(x^7)/(f(x))
derivative\:y=\frac{x^{7}}{f(x)}
derivative of x^7e^{9x}
\frac{d}{dx}(x^{7}e^{9x})
tangent of f(x)=(16x)/(x^2+16)
tangent\:f(x)=\frac{16x}{x^{2}+16}
limit as h approaches 0 of ((pi+h)+1)/h
\lim\:_{h\to\:0}(\frac{(π+h)+1}{h})
derivative of ((x^2-3x)/(sqrt(4x+1)))
\frac{d}{dx}(\frac{(x^{2}-3x)}{\sqrt{4x+1}})
area x,0,3
area\:x,0,3
sum from n=2 to infinity of 8/((n^2-1))
\sum\:_{n=2}^{\infty\:}\frac{8}{(n^{2}-1)}
tangent of y=(e^x)/x
tangent\:y=\frac{e^{x}}{x}
integral of (4sin(x)-1+8x^{-5})
\int\:(4\sin(x)-1+8x^{-5})dx
integral of t^2-4t+3
\int\:t^{2}-4t+3dt
integral of sin(y)cos(x)
\int\:\sin(y)\cos(x)dx
integral from 1 to 8 of xln(x)
\int\:_{1}^{8}x\ln(x)dx
integral of 8x^3+9sin(x)
\int\:8x^{3}+9\sin(x)dx
derivative of-(12)/(x^4)
derivative\:-\frac{12}{x^{4}}
y^{''}+2y^'+2y=sin(t)
y^{\prime\:\prime\:}+2y^{\prime\:}+2y=\sin(t)
limit as x approaches 3 of 3x^4
\lim\:_{x\to\:3}(3x^{4})
taylor arctan(x),1
taylor\:\arctan(x),1
(\partial)/(\partial z)(-5e^{3x+4y}sin(5z))
\frac{\partial\:}{\partial\:z}(-5e^{3x+4y}\sin(5z))
integral of (e^x-x^e)
\int\:(e^{x}-x^{e})dx
laplacetransform 4te^{-3t}
laplacetransform\:4te^{-3t}
limit as x approaches-infinity of (6x^2+5x^{1/3})/(sqrt(9x^4+7))
\lim\:_{x\to\:-\infty\:}(\frac{6x^{2}+5x^{\frac{1}{3}}}{\sqrt{9x^{4}+7}})
sum from n=1 to infinity of n^nx^n
\sum\:_{n=1}^{\infty\:}n^{n}x^{n}
y^'+8(tan(8x))y=-5cos(8x)
y^{\prime\:}+8(\tan(8x))y=-5\cos(8x)
limit as x approaches infinity of (\sqrt[x]{7}+1)/(\sqrt[x]{7)}
\lim\:_{x\to\:\infty\:}(\frac{\sqrt[x]{7}+1}{\sqrt[x]{7}})
tangent of y=x^2+7
tangent\:y=x^{2}+7
(\partial)/(\partial x)(1/(cos(x)))
\frac{\partial\:}{\partial\:x}(\frac{1}{\cos(x)})
(ln(2x+1))^'
(\ln(2x+1))^{\prime\:}
(2xy)dx-(1+y)dy=0
(2xy)dx-(1+y)dy=0
y^{''}-8y^'-9y=21e^{2t}
y^{\prime\:\prime\:}-8y^{\prime\:}-9y=21e^{2t}
limit as x approaches-1 of 4-x
\lim\:_{x\to\:-1}(4-x)
limit as x approaches 5-of 7/(x-5)
\lim\:_{x\to\:5-}(\frac{7}{x-5})
derivative of (x-3(x+2))
\frac{d}{dx}((x-3)(x+2))
integral of 1/(x^2sqrt(196-x^2))
\int\:\frac{1}{x^{2}\sqrt{196-x^{2}}}dx
derivative of (x-2)(x+1)(x+6)
derivative\:(x-2)(x+1)(x+6)
tangent of y=4+8x^2,(0,4)
tangent\:y=4+8x^{2},(0,4)
derivative of tan(4x^2-3x-4)
derivative\:\tan(4x^{2}-3x-4)
limit as x approaches 2-of x/(x^2+4)
\lim\:_{x\to\:2-}(\frac{x}{x^{2}+4})
integral of 3/4+4/5 x^2-5/6 x^3
\int\:\frac{3}{4}+\frac{4}{5}x^{2}-\frac{5}{6}x^{3}dx
derivative of sqrt(5)x+sqrt(7x)
derivative\:\sqrt{5}x+\sqrt{7x}
derivative of x^2(x^2-4)
\frac{d}{dx}(x^{2}(x^{2}-4))
limit as x approaches 2 of \sqrt[3]{(x^3-8)/(x-2)}
\lim\:_{x\to\:2}(\sqrt[3]{\frac{x^{3}-8}{x-2}})
derivative of 3/5 x^{5/3}
\frac{d}{dx}(\frac{3}{5}x^{\frac{5}{3}})
taylor sqrt(1+x)
taylor\:\sqrt{1+x}
derivative of (e^x+1/(e^x+2))
\frac{d}{dx}(\frac{e^{x}+1}{e^{x}+2})
limit as x approaches 2 of (x^3-8)/(x-2)
\lim\:_{x\to\:2}(\frac{x^{3}-8}{x-2})
d/(dt)(e^{2t}cos(t))
\frac{d}{dt}(e^{2t}\cos(t))
derivative of y=(ln(9x))/(9x)
derivative\:y=\frac{\ln(9x)}{9x}
integral from-1 to 7 of (4x+7)-(x^2-2x)
\int\:_{-1}^{7}(4x+7)-(x^{2}-2x)dx
integral of 8t
\int\:8tdt
f^'(x)=3e^{2x^2}
f^{\prime\:}(x)=3e^{2x^{2}}
y^'=(1-4y^2)/(3xy)
y^{\prime\:}=\frac{1-4y^{2}}{3xy}
derivative of y=-6cos(-2x)
derivative\:y=-6\cos(-2x)
limit as x approaches 0+of x^{2/3}
\lim\:_{x\to\:0+}(x^{\frac{2}{3}})
integral of (x^2)/(sqrt(x^6-5))
\int\:\frac{x^{2}}{\sqrt{x^{6}-5}}dx
derivative of x/((x^2-1^4))
\frac{d}{dx}(\frac{x}{(x^{2}-1)^{4}})
integral of tan^2(x)*sec(x)
\int\:\tan^{2}(x)\cdot\:\sec(x)dx
area 1/4 x^2,3-x,x=1
area\:\frac{1}{4}x^{2},3-x,x=1
derivative of ln(ln(12x))
\frac{d}{dx}(\ln(\ln(12x)))
integral of 1/(2sin^2(x)+3cos^2(x))
\int\:\frac{1}{2\sin^{2}(x)+3\cos^{2}(x)}dx
y^{''}+81y=cos(2t)
y^{\prime\:\prime\:}+81y=\cos(2t)
derivative of y=(3+4x-6sqrt(x))/x
derivative\:y=\frac{3+4x-6\sqrt{x}}{x}
derivative of y= 2/(x^3)
derivative\:y=\frac{2}{x^{3}}
(\partial)/(\partial z)(xsin(y-z))
\frac{\partial\:}{\partial\:z}(x\sin(y-z))
integral of (x^3)/(sqrt(u))
\int\:\frac{x^{3}}{\sqrt{u}}dx
slope of x^3-3x^2+3
slope\:x^{3}-3x^{2}+3
integral from 0 to 17 of x
\int\:_{0}^{17}xdx
laplacetransform cos^2(21t)
laplacetransform\:\cos^{2}(21t)
tangent of y=2sin(x),0,\at x=0
tangent\:y=2\sin(x),0,\at\:x=0
area 4x^2-4,x^4-1
area\:4x^{2}-4,x^{4}-1
limit as x approaches infinity of-9/x
\lim\:_{x\to\:\infty\:}(-\frac{9}{x})
derivative of f(x)=e^{2x^2}
derivative\:f(x)=e^{2x^{2}}
area y=6x-x^2,y=-2x
area\:y=6x-x^{2},y=-2x
limit as x approaches infinity of x+4
\lim\:_{x\to\:\infty\:}(x+4)
1
..
185
186
187
188
189
..
2459